1.Firing activity of locus coeruleus noradrenergic neurons increases in a rodent model of Parkinsonism.
Tao WANG ; Qiao-Jun ZHANG ; Jian LIU ; Zhong-Heng WU ; Shuang WANG
Neuroscience Bulletin 2009;25(1):15-20
OBJECTIVETo investigate the changes in the firing activity of noradrenergic neurons in the locus coeruleus (LC) in a rat model of Parkinson disease (PD).
METHODS2 and 4 weeks after unilateral lesion of the nigrostriatal pathway in the rat by local injection of 6-hydroxydopamine (6-OHDA) into the right substantia nigra pars compacta (SNc), the firing activity of noradrenergic neurons in LC was recorded by extracellular single unit recording.
RESULTSThe firing rate of LC noradrenergic neurons increased significantly 2 and 4 weeks after 6-OHDA lesions compared to normal rats, respectively (P < 0.05). The percentage of irregularly firing neurons was obviously higher than that of normal rats during the fourth week after SNc lesion (P < 0.05).
CONCLUSIONLC noradrenergic neurons are overactive and more irregular in 6-OHDA-lesioned rats. These changes suggest an implication of the LC in the pathophysiological mechanism of PD.
Action Potentials ; physiology ; Animals ; Disease Models, Animal ; Locus Coeruleus ; pathology ; Male ; Neurons ; physiology ; Norepinephrine ; metabolism ; Oxidopamine ; Parkinsonian Disorders ; chemically induced ; pathology ; Rats ; Rats, Sprague-Dawley ; Time Factors
2.Dynamic changes of locus coeruleus damage in Parkinson's disease-like mice induced by paraquat.
Bing Yang ZHANG ; Kai Dong WANG ; Bao Fu ZHANG ; Tian TIAN ; Yi Fan WANG ; Min HUANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(4):260-266
Objective: To observe the dynamic changes of brainstem locus coeruleus (LC) damage in Parkinson' s disease (PD) -like mice by paraquat (PQ) . Methods: In October 2019, 36 male C57BL/6 mice were randomly divided into the exposure group and the control group, with 18 mice in each group. The mice in the exposure group were given intraperitoneal injection of 15 mg/kg PQ, and the mice in the control group were given intraperitoneal injection of 0.9% saline, twice a week for 8 weeks. Neurobehavioral changes (pole climbing test, swimming test, open field test, tail hanging test, high plus maze test and water maze test) were observed at 4 weeks, 6 weeks and 8 weeks, respectively, and the changes of motor ability, emotion and cognitive function were evaluated. The brain tissue of mice were taken and stained with Hematoxylin-Eosin (HE) to observe the pathological changes of LC. Nissl staining was used to detect the changes of neuronal Nissl bodies in LC. Immunohistochemistry (IHC) staining was used to detect the expression of neuron nuclear antigen (NeuN) , dopamine (DA) neurons and norepinephrine (NE) neuron markers tyrosine hydroxylase (TH) , α-synuclein (α-syn) in substantia nigra (SN) and LC. The expression levels of NeuN, TH and α-syn in the midbrain and brainstem were detected by Western blotting. TUNEL staining was used to detect neuronal apoptosis in LC. Results: Compared with the 4th week of PQ exposure group, the time of pole climbing and swimming immobility were gradually increased, the ratio of open arm residence time of high plus maze test and the number of times of the platform and the residence time of platform quadrant in water maze test were gradually decreased (P<0.05) in the exposure group with the progress of exposure time. The results of HE and Nissl staining showed that the neurons in LC gradually arranged loosely, the nucleus were deeply stained, the cytoplasm was pyknosis, and the number of Nissl bodies gradually decreased (P<0.05) in the exposure group with the progress of exposure time. IHC results showed that the number of NeuN and TH positive cells in SN and LC of mice were gradually decreased, and the positive expression of α-syn was gradually increased (P<0.05) in the exposure group with the progress of exposure time. Western blotting results showed that the expression levels of NeuN and TH in the midbrain and brainstem were gradually decreased, and the expression level of α-syn was gradually increased (P<0.05) in the exposure group with the progress of exposure time. TUNEL staining showed that the apoptosis rates of neurons in LC were gradually increased (P<0.05) in the exposure group with the progress of exposure time. Conclusion: PQ induces progressive damage in the LC area of PD-like mice, which may be caused by the abnormal accumulation of pathological α-syn in the LC area.
Animals
;
Dopaminergic Neurons
;
Locus Coeruleus/pathology*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Paraquat/toxicity*
;
Parkinson Disease/metabolism*
;
Substantia Nigra
;
Tyrosine 3-Monooxygenase/metabolism*
3.Quantification of Tyrosine Hydroxylase and ErbB4 in the Locus Coeruleus of Mood Disorder Patients Using a Multispectral Method to Prevent Interference with Immunocytochemical Signals by Neuromelanin.
Lei GUO ; Jochem STORMMESAND ; Zheng FANG ; Qingbin ZHU ; Rawien BALESAR ; Joop VAN HEERIKHUIZE ; Arja SLUITER ; Dick SWAAB ; Ai-Min BAO
Neuroscience Bulletin 2019;35(2):205-215
The locus coeruleus (LC) has been studied in major depressive disorder (MDD) and bipolar disorder (BD). A major problem of immunocytochemical studies in the human LC is interference with the staining of the immunocytochemical end-product by the omnipresent natural brown pigment neuromelanin. Here, we used a multispectral method to untangle the two colors: blue immunocytochemical staining and brown neuromelanin. We found significantly increased tyrosine hydroxylase (TH) in the LC of MDD patients-thus validating the method-but not in BD patients, and we did not find significant changes in the receptor tyrosine-protein kinase ErbB4 in the LC in MDD or BD patients. We observed clear co-localization of ErbB4, TH, and neuromelanin in the LC neurons. The different stress-related molecular changes in the LC may contribute to the different clinical symptoms in MDD and BD.
Aged
;
Aged, 80 and over
;
Bipolar Disorder
;
metabolism
;
pathology
;
Depressive Disorder, Major
;
metabolism
;
pathology
;
Female
;
Humans
;
Image Processing, Computer-Assisted
;
Immunohistochemistry
;
methods
;
Locus Coeruleus
;
metabolism
;
pathology
;
Male
;
Melanins
;
metabolism
;
Microscopy
;
methods
;
Middle Aged
;
Neurons
;
metabolism
;
pathology
;
Receptor, ErbB-4
;
metabolism
;
Sensitivity and Specificity
;
Spectrum Analysis
;
methods
;
Tyrosine 3-Monooxygenase
;
metabolism
4.Mechanisms of Alzheimer's Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors.
Clinical Psychopharmacology and Neuroscience 2017;15(1):1-8
The characteristic features of Alzheimer's disease (AD) are the appearance of extracellular amyloid-beta (Aβ) plaques and neurofibrillary tangles in the intracellular environment, neuronal death and the loss of synapses, all of which contribute to cognitive decline in a progressive manner. A number of hypotheses have been advanced to explain AD. Abnormal tau phosphorylation may contribute to the formation of abnormal neurofibrillary structures. Many different structures are susceptible to AD, including the reticular formation, the nuclei in the brain stem (e.g., raphe nucleus), thalamus, hypothalamus, locus ceruleus, amygdala, substantia nigra, striatum, and claustrum. Excitotoxicity results from continuous, low-level activation of N-methyl-D-aspartate (NMDA) receptors. Premature synaptotoxicity, changes in neurotransmitter expression, neurophils loss, accumulation of amyloid β-protein deposits (amyloid/senile plaques), and neuronal loss and brain atrophy are all associated with stages of AD progression. Several recent studies have examined the relationship between Aβ and NMDA receptors. Aβ-induced spine loss is associated with a decrease in glutamate receptors and is dependent upon the calcium-dependent phosphatase calcineurin, which has also been linked to long-term depression.
Alzheimer Disease*
;
Amygdala
;
Amyloid
;
Animals, Genetically Modified
;
Atrophy
;
Basal Ganglia
;
Brain Stem
;
Brain*
;
Calcineurin
;
Depression
;
Hypothalamus
;
Locus Coeruleus
;
N-Methylaspartate*
;
Neurofibrillary Tangles
;
Neurons
;
Neurotransmitter Agents
;
Pathology*
;
Phosphorylation
;
Receptors, Glutamate
;
Receptors, N-Methyl-D-Aspartate*
;
Reticular Formation
;
Risk Factors*
;
Spine
;
Substantia Nigra
;
Synapses
;
tau Proteins*
;
Thalamus