1.Engineering and application of Komagataella phaffii as a cell factory.
Yufei LIU ; Ying CAO ; Liye CHANG ; Conghui SHAN ; Kun XU
Chinese Journal of Biotechnology 2023;39(11):4376-4396
Nowadays, engineered Komagataella phaffii plays an important role in the biosynthesis of small molecule metabolites and protein products, showing great potential and value in industrial productions. With the development and application of new editing tools such as CRISPR/Cas9, it has become possible to engineer K. phaffii into a cell factory with high polygenic efficiency. Here, the genetic manipulation techniques and objectives for engineering K. phaffii are first summarized. Secondly, the applications of engineered K. phaffii as a cell factory are introduced. Meanwhile, the advantages as well as disadvantages of using engineered K. phaffii as a cell factory are discussed and future engineering directions are prospected. This review aims to provide a reference for further engineering K. phaffii cell factory, which is supposed to facilitate its application in bioindustry.
Saccharomycetales/genetics*
;
Genetic Techniques
2.Study on release and antioxidant activity of quercetin after loaded by hot alkali hydrolysis modified UiO-66 material
Rui-miao CHANG ; Yan-yang ZHANG ; An-juan KANG ; Guang-bin ZHANG ; Yan-ping YU ; Jun-zhao REN ; An-jia CHEN ; Yong LI
Acta Pharmaceutica Sinica 2023;58(9):2802-2810
UiO-66 (University of Oslo 66) is a kind of promising material that can improve the release and bioavailability of poorly water-soluble bioactive compounds of traditional Chinese medicine. However, the loading of quercetin in raw UiO-66 was not ideal. In this study, UiO-66-BH (UiO-66-blend-heating) was obtained by heating UiO-66 and KOH solution following blended them. UiO-66-BH maintained the outline of octahedral structure of UiO-66 but with obvious rough and uneven pores on the surface. UiO-66-BH had good adsorption of quercetin with saturation adsorption was 138.92 mg·g-1, the adsorption process belonged to single molecular layer adsorption and was controlled by chemisorption. UiO-66-BH can control the release of quercetin in simulated gastrointestinal fluid, and the drug concentration was significantly higher than that of free quercetin after long-term release (36%