1.The Role of Mesothelial Cells in Liver Development, Injury, and Regeneration.
Gut and Liver 2016;10(2):166-176
Mesothelial cells (MCs) cover the surface of visceral organs and the parietal walls of cavities, and they synthesize lubricating fluids to create a slippery surface that facilitates movement between organs without friction. Recent studies have indicated that MCs play active roles in liver development, fibrosis, and regeneration. During liver development, the mesoderm produces MCs that form a single epithelial layer of the mesothelium. MCs exhibit an intermediate phenotype between epithelial cells and mesenchymal cells. Lineage tracing studies have indicated that during liver development, MCs act as mesenchymal progenitor cells that produce hepatic stellate cells, fibroblasts around blood vessels, and smooth muscle cells. Upon liver injury, MCs migrate inward from the liver surface and produce hepatic stellate cells or myofibroblast depending on the etiology, suggesting that MCs are the source of myofibroblasts in capsular fibrosis. Similar to the activation of hepatic stellate cells, transforming growth factor β induces the conversion of MCs into myofibroblasts. Further elucidation of the biological and molecular changes involved in MC activation and fibrogenesis will contribute to the development of novel approaches for the prevention and therapy of liver fibrosis.
Epithelial Cells/*physiology
;
Epithelium/metabolism
;
Hepatic Stellate Cells/*physiology
;
Humans
;
Liver/*cytology/injuries/*physiology
;
Liver Cirrhosis/etiology/prevention & control
;
Liver Regeneration/*physiology
;
Mesenchymal Stromal Cells/physiology
;
Myofibroblasts/physiology
2.Effect of shift rotation culture on formation and activity of encapsulated hepatocytes aggregates.
Yanshan CHEN ; Chengbo YU ; Hongcui CAO ; Lanjuan LI
Journal of Zhejiang University. Medical sciences 2016;45(4):403-409
To observe the effect of uniform and shift rotation culture on the formation and activity of the alginate-chitosan (AC) microencapsulated HepLL immortalized human hepatocytes and HepG2 cells aggregates.AC microcapsulated HepG2 and HepLL cells were randomly divided into two groups. Each group was divided into 3 subgroups according to uniform and shift rotation culture.The size and number of aggregates were observed and measured under laser confocal microscopy and inverted microscope dynamically. The amount of albumin synthesis was detected by ELISA, the clearance of ammonia was detected by colorimetry, and diazepam conversion function was detected by high performance liquid chromatography (HPLC).On day 6, 8, 10, 12, 14 and 16, the number and size of the aggregates, albumin synthesis, diazepam clearance and ammonium clearance increased significantly in shift rotation culture group than in uniform group (all<0.01). The albumin synthesis, diazepam clearance, and ammonium clearance in the microencapsulated HepLL groups were significantly higher than those of HepG2 cells at any time (all<0.01).Shift rotation culture can significantly promote the formation and increase the activity of AC microencapsulated HepLL and HepG2 aggregates, and HepLL cells may be more suitable for bioartificial liver than HepG2.
Albumins
;
biosynthesis
;
metabolism
;
Alginates
;
Ammonia
;
metabolism
;
Animals
;
Cell Aggregation
;
physiology
;
Cell Culture Techniques
;
methods
;
Cell Line, Transformed
;
physiology
;
Chitosan
;
Diazepam
;
metabolism
;
Glucuronic Acid
;
Hep G2 Cells
;
cytology
;
physiology
;
Hepatocytes
;
cytology
;
physiology
;
Hexuronic Acids
;
Humans
;
Liver, Artificial
;
Rotation
3.Therapeutic Effects of Mesenchymal Stem Cells for Patients with Chronic Liver Diseases: Systematic Review and Meta-analysis.
Gaeun KIM ; Young Woo EOM ; Soon Koo BAIK ; Yeonghee SHIN ; Yoo Li LIM ; Moon Young KIM ; Sang Ok KWON ; Sei Jin CHANG
Journal of Korean Medical Science 2015;30(10):1405-1415
Based on their ability to differentiate into multiple cell types including hepatocytes, the transplantation of mesenchymal stem cells (MSCs) has been suggested as an effective therapy for chronic liver diseases. The aim of this study was to evaluate the safety, efficacy and therapeutic effects of MSCs in patients with chronic liver disease through a literature-based examination. We performed a systematic review (SR) and meta-analysis (MA) of the literature using the Ovid-MEDLINE, EMBASE and Cochrane Library databases (up to November 2014) to identify clinical studies in which patients with liver diseases were treated with MSC therapy. Of the 568 studies identified by the initial literature search, we analyzed 14 studies and 448 patients based on our selection criteria. None of the studies reported the occurrence of statistically significant adverse events, side effects or complications. The majority of the analyzed studies showed improvements in liver function, ascites and encephalopathy. In particular, an MA showed that MSC therapy improved the total bilirubin level, the serum albumin level and the Model for End-stage Liver Disease (MELD) score after MSC treatment. Based on these results, MSC transplantation is considered to be safe for the treatment of chronic liver disease. However, although MSCs are potential therapeutic agents that may improve liver function, in order to obtain meaningful insights into their clinical efficacy, further robust clinical studies must be conducted to evaluate the clinical outcomes, such as histological improvement, increased survival and reduced liver-related complications, in patients with chronic liver disease.
Cell Differentiation/physiology
;
Cell- and Tissue-Based Therapy/adverse effects/*methods
;
Hepatocytes/cytology
;
Humans
;
Liver/physiopathology/surgery
;
Liver Diseases/*therapy
;
Liver Function Tests
;
Mesenchymal Stem Cell Transplantation/adverse effects/*methods
;
Mesenchymal Stromal Cells/*cytology
4.Effect of colon cancer cell-derived IL-1α on the migration and proliferation of vascular endothelial cells.
Jiachi MA ; Quan CHEN ; Yuanhui GU ; Yiping LI ; Wei FANG ; Meiling LIU ; Xiaochang CHEN ; Qingjin GUO ; Shixun MA
Chinese Journal of Oncology 2015;37(11):810-815
OBJECTIVETo explore the effect of colon cancer cell-derived interleukin-1α on the migration and proliferation of human umbilical vein endothelial cells as well as the role of IL-1α and IL-1ra in the angiogenesis process.
METHODSWestern blot was used to detect the expression of IL-1α and IL-1R1 protein in the colon cancer cell lines with different liver metastatic potential. We also examined how IL-1α and IL-1ra influence the proliferation and migration of umbilical vascular endothelial cells assessed by PreMix WST-1 assay and migration assay, respectively. Double layer culture technique was used to detect the effect of IL-1α on the proliferation and migration of vascular endothelial cells and the effect of IL-1ra on the vascular endothelial cells.
RESULTSWestern blot analysis showed that IL-1α protein was only detected in highly metastatic colon cancer HT-29 and WiDr cells, but not in the lowly metastatic CaCo-2 and CoLo320 cells.Migration assay showed that there were significant differences in the number of penetrated cells between the control (17.9±3.6) and 1 ng/ml rIL-1α group (23.2±4.2), 10 ng/ml rIL-1α group (31.7±4.5), and 100 ng/ml rIL-1α group (38.6±4.9), showing that it was positively correlated with the increasing concentration of rIL-1α (P<0.01 for all). The proliferation assay showed that the absorbance values were 1.37±0.18 in the control group, and 1.79±0.14 in the 1 ng/ml rIL-1α group, 2.14±0.17 in the 10 ng/ml rIL-1α group, and 2.21±0.23 in the 100 ng/ml rIL-1α group, showing a positive correlation with the increasing concentration of rIL-1α(P<0.01 for all). IL-1ra significantly inhibited the proliferation and migration of vascular endothelial cells (P<0.01). The levels of VEGF protein were (1.697±0.072) ng/ml, (3.507±0.064)ng/ml and (4.139±0.039)ng/ml in the control, HUVECs+ IL-1α and HUVECs+ HT-29 co-culture system groups, respectively, showing a significant difference between the control and HUVECs+ 10 pg/ml rIL-1α groups and between the control and HUVECs+ HT-29 groups (P<0.01 for both).
CONCLUSIONSOur findings indicate that colon cancer cell-derived IL-1α plays an important role in the liver metastasis of colon cancer through increased VEGF level of the colon cancer cells and enhanced vascular endothelial cells proliferation, migration and angiogenesis, while IL-1ra can suppress the effect of IL-1α and inhibit the angiogenesis in colon cancer.
Blotting, Western ; Caco-2 Cells ; Cell Line, Tumor ; Cell Movement ; physiology ; Cell Proliferation ; physiology ; Coculture Techniques ; Colonic Neoplasms ; blood supply ; metabolism ; pathology ; Human Umbilical Vein Endothelial Cells ; cytology ; Humans ; Interleukin 1 Receptor Antagonist Protein ; metabolism ; physiology ; Interleukin-1alpha ; metabolism ; physiology ; Liver Neoplasms ; secondary ; Neovascularization, Pathologic ; etiology
5.Effect of spleen lymphocytes on the splenomegaly in hepatocellular carcinoma-bearing mice.
Jing Jing FANG ; Zhen Yuan ZHU ; Hui DONG ; Guo Qiang ZHENG ; An Guo TENG ; An Jun LIU
Biomedical and Environmental Sciences 2014;27(1):17-26
OBJECTIVETo study the effect of spleen lymphocytes on the splenomegaly by hepatocellular carcinoma-bearing mouse model.
METHODSCell counts, cell cycle distribution, the percentage of lymphocytes subsets and the levels of IL-2 were measured, and two-dimensional gel electrophoresis (2-DE) was used to investigate the relationship between spleen lymphocytes and splenomegaly in hepatocellular carcinoma-bearing mice.
RESULTSCompared with the normal group, the thymus was obviously atrophied and the spleen was significantly enlarged in the tumor-bearing group. Correlation study showed that the number of whole spleen cells was positively correlated with the splenic index. The cell diameter and cell-cycle phase distribution of splenocytes in the tumor-bearing group showed no significant difference compared to the normal group. The percentage of CD3+ T lymphocytes and CD8+ T lymphocytes in spleen and peripheral blood of tumor-bearing mice were substantially higher than that in the normal mice. Meanwhile, the IL-2 level was also higher in the tumor-bearing group than in the normal group. Furthermore, two dysregulated protein, β-actin and S100-A9 were identified in spleen lymphocytes from H22-bearing mice, which were closely related to cellular motility.
CONCLUSIONIt is suggested that dysregulated β-actin and S100-A9 can result in recirculating T lymphocytes trapped in the spleen, which may explain the underlying cause of splenomegaly in H22-bearing mice.
Animals ; Carcinoma, Hepatocellular ; complications ; Cell Cycle ; Female ; Liver Neoplasms ; complications ; Lymphocytes ; physiology ; Mice ; Mice, Inbred ICR ; Neoplasms, Experimental ; therapy ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spleen ; cytology ; pathology ; Splenomegaly ; etiology ; therapy ; Thymus Gland
6.Mouse A6-positive hepatic oval cells derived from embryonic stem cells.
Dong-zhi YIN ; Ji-ye CAI ; Qi-chang ZHENG ; Zheng-wei CHEN ; Jing-xian ZHAO ; You-neng YUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):1-9
Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were used to induce differentiation of mouse embryonic stem (ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group (up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.
Animals
;
Antigens, CD34
;
genetics
;
metabolism
;
Antigens, Ly
;
genetics
;
metabolism
;
Cell Differentiation
;
drug effects
;
genetics
;
physiology
;
Cell Line
;
Embryonic Stem Cells
;
cytology
;
metabolism
;
ultrastructure
;
Epidermal Growth Factor
;
pharmacology
;
Flow Cytometry
;
Gene Expression Regulation, Developmental
;
drug effects
;
Hepatocyte Growth Factor
;
pharmacology
;
Liver
;
cytology
;
metabolism
;
Membrane Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred BALB C
;
Microfilament Proteins
;
metabolism
;
Microscopy, Atomic Force
;
Microscopy, Electron, Transmission
;
Reverse Transcriptase Polymerase Chain Reaction
;
Stem Cells
;
cytology
;
metabolism
;
ultrastructure
;
Time Factors
7.Advances in mesenchymal stem cells combined with traditional Chinese medicine therapy for liver fibrosis.
Shu DONG ; Shi-Bing SU ; E-mail: SHIBINGSU07@163.COM.
Journal of Integrative Medicine 2014;12(3):147-155
Liver fibrosis is a primary cause of liver cirrhosis, and even hepatocarcinoma. Recently, the usage of mesenchymal stem cells (MSCs) has been investigated to improve liver fibrosis. It has been reported that the differentiation, proliferation and migration of MSCs can be regulated by traditional Chinese medicine treatment; however, the mechanisms are still unclear. In this article, the authors review the characteristics of MSCs such as multidirectional differentiation and homing, and its application in animal experiments and clinical trials. The authors also list areas that need further investigation, andlook at the future prospects of clinical application of MSCs.
Animals
;
Cell Differentiation
;
Cell Movement
;
Clinical Trials as Topic
;
Combined Modality Therapy
;
Humans
;
Liver Cirrhosis
;
therapy
;
Medicine, Chinese Traditional
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
8.Pristimerin enhances recombinant adeno-associated virus vector-mediated transgene expression in human cell lines in vitro and murine hepatocytes in vivo.
Li-na WANG ; Yuan WANG ; Yuan LU ; Zi-fei YIN ; Yuan-hui ZHANG ; George V ASLANIDI ; Arun SRIVASTAVA ; Chang-quan LING ; Chen LING ; E-mail: LINGCHEN@PEDS.UFL.EDU.
Journal of Integrative Medicine 2014;12(1):20-34
OBJECTIVEIn the present study, we systemically evaluated the ability of two bioactive compounds from traditional Chinese medicine, celastrol and pristimerin, to enhance recombinant adeno-associated virus (rAAV) serotype vector-mediated transgene expression both in human cell lines in vitro, and in murine hepatocytes in vivo.
METHODSHuman cell lines were infected with rAAV vectors with either mock treatment or treatment with celastrol or pristimerin. The transgene expression, percentage of nuclear translocated viral genomes and the ubiquitination of intracellular proteins were investigated post-treatment. In addition, nonobese diabetic/severe combined immunodeficient gamma (NSG) mice were tail vain-injected with rAAV vectors and co-administered with either dimethyl sulfoxide, celastrol, pristimerin or a positive control, bortezomib. The transgene expression in liver was detected and compared over time.
RESULTSWe observed that treatment with pristimerin, at as low as 1 μmol/L concentration, significantly enhanced rAAV2 vector-mediated transgene expression in vitro, and intraperitoneal co-administration with pristimerin at 4 mg/(kg·d) for 3 d dramatically facilitated viral transduction in murine hepatocytes in vivo. The transduction efficiency of the tyrosine-mutant rAAV2 vectors as well as that of rAAV8 vectors carrying oversized transgene cassette was also augmented significantly by pristimerin. The underlying molecular mechanisms by which pristimerin mediated the observed increase in the transduction efficiency of rAAV vectors include both inhibition of proteasomal degradation of the intracellular proteins and enhanced nuclear translocation of the vector genomes.
CONCLUSIONThese studies suggest the potential beneficial use of pristimerin and pristimerin-containing herb extract in future liver-targeted gene therapy with rAAV vectors.
Animals ; Cell Line ; Dependovirus ; genetics ; physiology ; Gene Expression ; drug effects ; Genetic Therapy ; Genetic Vectors ; genetics ; physiology ; Hepatocytes ; metabolism ; virology ; Humans ; Liver ; cytology ; metabolism ; virology ; Mice ; Transgenes ; drug effects ; Triterpenes ; pharmacology
9.Lentiviral-mediated RNA interference of LXRα gene in donor rats with fatty liver enhances liver graft function after transplantation.
Yingpeng ZHAO ; Li LI ; Jingpan MA ; Gang CHEN ; Jianhua BAI
Journal of Southern Medical University 2014;34(7):1005-1010
OBJECTIVETo investigate whether RNA interference (RNAi) of LXRα gene in donor rats with fatty liver improves liver graft function after transplantation.
METHODSFifty donor SD rats were fed a high-fat diet and 56% alcohol to induce macrovesicular steatosis exceeding 60% in the liver. The donor rats were injected via the portal veins with 7 × 10⁷ TU LXRα-RNAi-LV mixture (n=25) or negative control-LV (NC-LV) vector (n=25) 72 h before orthotopic liver transplantation. At 2, 24, and 72 h after the transplantation, the recipient rats were sacrificed to examine liver transaminases, liver graft histology, immunostaining (TUNEL), and protein and mRNA levels of LXRα.
RESULTSLentivirus-LXRα RNAi inhibited LXRα gene expression at both the mRNA and protein levels in the liver graft and reduced the expressions of SREBP-1c and CD36 as compared with the controls, resulting also in reduced fatty acid accumulation in the hepatocytes. The recipient rats receiving RNAi-treated grafts showed more obvious reduction in serum ALT, AST, IL-1β and TNF-α levels, and exhibited milder hepatic pathologies than the control rats after the transplantation. TUNEL assay demonstrated a significant reduction in cell apoptosis in LXRα-RNAi-LV-treated liver grafts, and the rats receiving treated liver grafts had a prolonged mean overall survival time.
CONCLUSIONLXRα-RNAi-LV treatment of the donor rats with fatty liver can significantly down-regulate LXRα gene expression in the liver graft and improve the graft function and recipient rat survival after liver transplantation.
Animals ; Fatty Liver ; genetics ; surgery ; Gene Expression Regulation ; Hepatocytes ; cytology ; Lentivirus ; Liver ; physiology ; Liver Transplantation ; Liver X Receptors ; Orphan Nuclear Receptors ; genetics ; RNA Interference ; RNA, Messenger ; Rats ; Rats, Sprague-Dawley
10.Vitamin D3 up-regulated protein 1 controls the priming phase of liver regeneration.
Hyo Jung KWON ; Sung Kuk HONG ; Won Kee YOON ; Ki Hoan NAM ; In Pyo CHOI ; Dae Yong KIM ; Hyoung Chin KIM ; Young Suk WON
Journal of Veterinary Science 2013;14(3):257-262
Vitamin D3 up-regulated protein 1 (VDUP1) is a potent growth suppressor that inhibits tumor cell proliferation and cell cycle progression when overexpressed. In a previous study, we showed that VDUP1 knockout (KO) mice exhibited accelerated liver regeneration because such animals could effectively control the expression of cell cycle regulators that drive the G1-to-S phase progression. In the present study, we further investigated the role played by VDUP1 in initial priming of liver regeneration. To accomplish this, VDUP1 KO and wild-type (WT) mice were subjected to 70% partial hepatectomy (PH) and sacrificed at different times after surgery. The hepatic levels of TNF-alpha and IL-6 increased after PH, but there were no significant differences between VDUP1 KO and WT mice. Nuclear factor-kappaB (NF-kappaB), c-Jun-N-terminal kinase (JNK), and signal transducer and activator of transcription 3 (STAT-3) were activated much earlier and to a greater extent in VDUP1 KO mice after PH. A single injection of TNF-alpha or IL-6 caused rapid activation of JNK and STAT-3 expression in both mice, but the responses were stronger and more sustained in VDUP1 KO mice. In conclusion, our findings provide evidence that VDUP1 plays a role in initiation of liver regeneration.
Animals
;
Blotting, Western
;
Carrier Proteins/*genetics/metabolism
;
Cell Proliferation
;
*Gene Expression Regulation
;
Hepatectomy
;
Hepatocytes/*cytology/physiology
;
JNK Mitogen-Activated Protein Kinases/genetics/metabolism
;
Liver/*physiology
;
Male
;
Mice, Knockout
;
NF-kappa B/genetics/metabolism
;
Polymerase Chain Reaction
;
*Regeneration
;
STAT3 Transcription Factor/genetics/metabolism
;
Thioredoxins/*genetics/metabolism

Result Analysis
Print
Save
E-mail