1.Current Status and Strategies of Integrated Traditional Chinese and Western Medicine in the Treatment of Helicobacter pylori Infection
Xuezhi ZHANG ; Xia DING ; Zhen LIU ; Hui YE ; Xiaofen JIA ; Hong CHENG ; Zhenyu WU ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):111-116
This paper systematically reviews the current status of integrated traditional Chinese and western medicine in the treatment of Helicobacter pylori (Hp) infection, as well as recent progress in clinical and basic research both in China and internationally. It summarizes the advantages of traditional Chinese medicine (TCM) in Hp infection management, including improving Hp eradication rates, enhancing antibiotic sensitivity, reducing antimicrobial resistance, decreasing drug-related adverse effects, and ameliorating gastric mucosal lesions. These advantages are particularly evident in patients who are intolerant to bismuth-containing regimens, those with refractory Hp infection, and individuals with precancerous gastric lesions. An integrated, whole-process management approach and individualized, staged comprehensive treatment strategies combining TCM and western medicine are proposed for Hp infection. Future prevention and control of Hp infection should adopt an integrative Chinese-western medical strategy, emphasizing prevention, strengthening primary care, implementing proactive long-term monitoring, optimizing screening strategies, and advancing the development of novel technologies and mechanistic studies of Chinese herbal interventions. These efforts aim to provide a theoretical basis and practical pathways for the establishment and improvement of Hp infection prevention and control systems.
2.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.
3.RhD-negative blood donors: genetic polymorphisms and testing strategies
Kecheng WANG ; Xiaoqin WANG ; Yingzhou DING ; Tingting ZHANG ; Ming LIU ; Cheng XU
Chinese Journal of Blood Transfusion 2025;38(7):934-940
Objective: To investigate the genetic basis of RhD-negative phenotype in the blood donor population of Nantong City. Methods: RHD genotyping was performed on 386 randomly selected RhD-negative donor samples (from a total of 676 RhD-negative donors identified between January 20, 2023, and June 28, 2024) using polymerase chain reaction (PCR), and the inconclusive results were confirmed by nucleotide sequencing. Results: Ten RHD allele types were identified: The complete deletion variant RHD
01N.01 was predominant (64.25%, 248/386); followed by RHD
01EL.01 (19.69%, 76/386). RHD
01N.03, RHD
01N.04, RHD
01N.16 and RHD
01EL.32 were frequently observed., RHD
01EL.02, RHD
01EL.08, RHD
01EL.37 and RHD
01N.25 were rare, and two exon deletion variants remained uncharacterized. The phenotypic distribution of RhD-negative blood donors was ccee (55.44%)>Ccee(31.09%)>ccEe(5.96%)>CCee(5.44%)>CcEe(1.81%)>CcEE(0.26%), and the antigen distribution trend was e(99.74%)>c(94.56%)>C(38.60%)>E(8.03%). A correlation was observed between RHD genotypes and RhCE phenotypes. Conclusion: The Nantong blood donor population exhibits unique RHD gene polymorphisms. Integrating RhCE serological phenotyping with RHD genotyping is essential for ensuring transfusion safety.
4.RhD-negative blood donors: genetic polymorphisms and testing strategies
Kecheng WANG ; Xiaoqin WANG ; Yingzhou DING ; Tingting ZHANG ; Ming LIU ; Cheng XU
Chinese Journal of Blood Transfusion 2025;38(7):934-940
Objective: To investigate the genetic basis of RhD-negative phenotype in the blood donor population of Nantong City. Methods: RHD genotyping was performed on 386 randomly selected RhD-negative donor samples (from a total of 676 RhD-negative donors identified between January 20, 2023, and June 28, 2024) using polymerase chain reaction (PCR), and the inconclusive results were confirmed by nucleotide sequencing. Results: Ten RHD allele types were identified: The complete deletion variant RHD
01N.01 was predominant (64.25%, 248/386); followed by RHD
01EL.01 (19.69%, 76/386). RHD
01N.03, RHD
01N.04, RHD
01N.16 and RHD
01EL.32 were frequently observed., RHD
01EL.02, RHD
01EL.08, RHD
01EL.37 and RHD
01N.25 were rare, and two exon deletion variants remained uncharacterized. The phenotypic distribution of RhD-negative blood donors was ccee (55.44%)>Ccee(31.09%)>ccEe(5.96%)>CCee(5.44%)>CcEe(1.81%)>CcEE(0.26%), and the antigen distribution trend was e(99.74%)>c(94.56%)>C(38.60%)>E(8.03%). A correlation was observed between RHD genotypes and RhCE phenotypes. Conclusion: The Nantong blood donor population exhibits unique RHD gene polymorphisms. Integrating RhCE serological phenotyping with RHD genotyping is essential for ensuring transfusion safety.
5.Synthesis and evaluation of TSPO-targeting radioligand 18FF-TFQC for PET neuroimaging in epileptic rats.
Wenhui FU ; Qingyu LIN ; Zhequan FU ; Tingting YANG ; Dai SHI ; Pengcheng MA ; Hongxing SU ; Yunze WANG ; Guobing LIU ; Jing DING ; Hongcheng SHI ; Dengfeng CHENG
Acta Pharmaceutica Sinica B 2025;15(2):722-736
The translocator protein (TSPO) positron emission tomography (PET) can noninvasively detect neuroinflammation associated with epileptogenesis and epilepsy. This study explored the role of the TSPO-targeting radioligand [18F]F-TFQC, an m-trifluoromethyl ER176 analog, in the PET neuroimaging of epileptic rats. Initially, [18F]F-TFQC was synthesized with a radiochemical yield of 8%-10% (EOS), a radiochemical purity of over 99%, and a specific activity of 38.21 ± 1.73 MBq/nmol (EOS). After determining that [18F]F-TFQC exhibited good biochemical properties, [18F]F-TFQC PET neuroimaging was performed in epileptic rats at multiple time points in various stages of disease progression. PET imaging showed specific [18F]F-TFQC uptake in the right hippocampus (KA-injected site, i.e., epileptogenic zone), which was most pronounced at 1 week (T/NT 1.63 ± 0.21) and 1 month (T/NT 1.66 ± 0.20). The PET results were further validated using autoradiography and pathological analysis. Thus, [18F]F-TFQC can reflect the TSPO levels and localize the epileptogenic zone, thereby offering the potential for monitoring neuroinflammation and guiding anti-inflammatory treatment in patients with epilepsy.
6.First ATG101-recruiting small molecule degrader for selective CDK9 degradation via autophagy-lysosome pathway.
Ye ZHONG ; Jing XU ; Huiying CAO ; Jie GAO ; Shaoyue DING ; Zhaohui REN ; Huali YANG ; Yili SUN ; Maosheng CHENG ; Jia LI ; Yang LIU
Acta Pharmaceutica Sinica B 2025;15(5):2612-2624
Cyclin-dependent kinase 9 (CDK9) is a member of the transcription CDK subfamily and plays a role in transcriptional regulation. Selective CDK9 degraders possess potent clinical advantages over reversible CDK9 inhibitors. Herein, we report the first ATG101-recruiting selective CDK9 degrader, AZ-9, based on the hydrophobic tag kinesin degradation technology. AZ-9 showed significant degradation effects and selectivity toward other homologous cell cycle CDKs in vitro and in vivo, which could also affect downstream related phenotypes. Mechanism research revealed that AZ-9 recruits ATG101 to initiate the autophagy-lysosome pathway, and forms autophagosomes through the recruitment of LC3, which then fuses with lysosomes to degrade CDK9 and the partner protein Cyclin T1. These dates validated the existence of non-proteasomal degradation pathway of hydrophobic driven protein degradation strategy for the first time, which might provide research ideas for chemical induction intervention on other types of pathogenic proteins.
7.Nogo-A Protein Mediates Oxidative Stress and Synaptic Damage Induced by High-Altitude Hypoxia in the Rat Hippocampus.
Jin Yu FANG ; Huai Cun LIU ; Yan Fei ZHANG ; Quan Cheng CHENG ; Zi Yuan WANG ; Xuan FANG ; Hui Ru DING ; Wei Guang ZHANG ; Chun Hua CHEN
Biomedical and Environmental Sciences 2025;38(1):79-93
OBJECTIVE:
High-altitude hypoxia exposure often damages hippocampus-dependent learning and memory. Nogo-A is an important axonal growth inhibitory factor. However, its function in high-altitude hypoxia and its mechanism of action remain unclear.
METHODS:
In an in vivo study, a low-pressure oxygen chamber was used to simulate high-altitude hypoxia, and genetic or pharmacological intervention was used to block the Nogo-A/NgR1 signaling pathway. Contextual fear conditioning and Morris water maze behavioral tests were used to assess learning and memory in rats, and synaptic damage in the hippocampus and changes in oxidative stress levels were observed. In vitro, SH-SY5Y cells were used to assess oxidative stress and mitochondrial function with or without Nogo-A knockdown in Oxygen Glucose-Deprivation/Reperfusion (OGD/R) models.
RESULTS:
Exposure to acute high-altitude hypoxia for 3 or 7 days impaired learning and memory in rats, triggered oxidative stress in the hippocampal tissue, and reduced the dendritic spine density of hippocampal neurons. Blocking the Nogo-A/NgR1 pathway ameliorated oxidative stress, synaptic damage, and the learning and memory impairment induced by high-altitude exposure.
CONCLUSION:
Our results demonstrate the detrimental role of Nogo-A protein in mediating learning and memory impairment under high-altitude hypoxia and suggest the potential of the Nogo-A/NgR1 signaling pathway as a crucial therapeutic target for alleviating learning and memory dysfunction induced by high-altitude exposure.
GRAPHICAL ABSTRACT
available in www.besjournal.com.
Animals
;
Oxidative Stress
;
Hippocampus/metabolism*
;
Rats
;
Nogo Proteins/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Hypoxia/metabolism*
;
Altitude
;
Synapses
;
Humans
;
Altitude Sickness/metabolism*
8.2024 Expert Consensus on Hospital Acquired Infection Control Principles in the Department of Critical Care Medicine
Wenzhao CHAI ; Jingjing LIU ; Xiaoting WANG ; Xiaojun MA ; Bo TANG ; Qing ZHANG ; Bin WANG ; Xiaomeng WANG ; Shihong ZHU ; Wenjin CHEN ; Zujun CHEN ; Quanhui YANG ; Rongli YANG ; Xin DING ; Hua ZHAO ; Wei CHENG ; Jun DUNA ; Jingli GAO ; Dawei LIU
Medical Journal of Peking Union Medical College Hospital 2024;15(3):522-531
Critically ill patients are at high risk for hospital acquired infections, which can significantly increase the mortality rate and treatment costs for these patients. Therefore, in the process of treating the primary disease, strict prevention and control of new hospital infections is an essential component of the treatment for critically ill patients. The treatment of critically ill patients involves multiple steps and requires a concerted effort from various aspects such as theory, management, education, standards, and supervision to achieve effective prevention and control of hospital infections. However, there is currently a lack of unified understanding and standards for hospital infection prevention and control. To address this, in March 2024, a group of experts in critical care medicine, infectious diseases, and hospital infection from China discussed the current situation and issues of hospital infection control in the intensive care unit together. Based on a review of the latest evidence-based medical evidence from both domestic and international sources,
9.Impact and mechanism of curcumin on endometriosis model rats
Cuimei QIN ; Xinyi LIU ; Xiaolan DING ; Huiling GUO ; Pinying CHEN ; Jiao LIU ; Jie CHENG
China Pharmacy 2024;35(22):2744-2749
OBJECTIVE To explore the impact and mechanism of curcumin on endometriosis (EMS) model rats based on Notch1 signaling pathway. METHODS Female SD rats with synchronized estrous cycles were implanted with autologous endometrium on the abdominal wall to construct EMS model. EMS rats were randomly divided into model group, low-, medium- and high-dose groups of curcumin (60, 120, 240 mg/kg), and Notch 1 inhibitor DAPT group (7 mg/kg). The sham surgery group was also established, with 10 rats in each group. Rats in each group received intragastric administration or injection via caudal veins with the corresponding drugs for 4 weeks. Endometriotic lesions were observed and measured using ultrasound and visual inspection, and their volumes were calculated. Histopathological morphology of the lesion tissues was observed. The levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in the abdominal cavity fluid, as well as the mRNA and protein expression levels of Notch1, matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor (VEGF) in the endometriotic lesions were measured. RESULTS Compared with the model group, the volume of endometriotic lesions in the low- , medium- and high-dose groups of curcumin and the DAPT group was significantly decreased (P<0.05); atrophy or disappearance of columnar epithelium, cyst disappearance; the levels of IL-1β, IL-6, and TNF- α (except for the low-dose curcumin group) in the abdominal cavity fluid, as well as the mRNA (except for MMP-9 and VEGF in the low-dose curcumin group) and protein (except for MMP-9 in the low-dose curcumin group) expression levels of Notch1, MMP-9, and VEGF in the endometriotic lesions were significantly decreased (P<0.05). The curcumin high-dose group and DAPT group showed superior results in most indicators compared to the curcumin low- and medium-dose groups. CONCLUSIONS Curcumin has an improving effect on EMS, and its mechanism may be related to inhibiting Notch1 signaling pathway, reducting local inflammatory responses, and inhibiting ectopic endometrial invasion and angiogenesis.
10.Ku70 Functions as an RNA Helicase to Regulate miR-124 Maturation and Neuronal Cell Differentiation
Ai-Xue HUANG ; Rui-Ting LI ; Yue-Chao ZHAO ; Jie LI ; Hui LI ; Xue-Feng DING ; Lin WANG ; Can XIAO ; Xue-Mei LIU ; Cheng-Feng QIN ; Ning-Sheng SHAO
Progress in Biochemistry and Biophysics 2024;51(6):1418-1433
ObjectiveHuman Ku70 protein mainly involves the non-homologous end joining (NHEJ) repair of double-stranded DNA breaks (DSB) through its DNA-binding properties, and it is recently reported having an RNA-binding ability. This paper is to explore whether Ku70 has RNA helicase activity and affects miRNA maturation. MethodsRNAs bound to Ku protein were analyzed by RNA immunoprecipitation sequencing (RIP-seq) and bioinfomatic anaylsis. The expression relationship between Ku protein and miRNAs was verified by Western blot (WB) and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays. Binding ability of Ku protein to the RNAs was tested by biolayer interferometry (BLI) assay. RNA helicase activity of Ku protein was identified with EMSA assay. The effect of Ku70 regulated miR-124 on neuronal differentiation was performed by morphology analysis, WB and immunofluorescence assays with or without Zika virus (ZIKV) infection. ResultsWe revealed that the Ku70 protein had RNA helicase activity and affected miRNA maturation. Deficiency of Ku70 led to the up-regulation of a large number of mature miRNAs, especially neuronal specific miRNAs like miR-124. The knockdown of Ku70 promoted neuronal differentiation in human neural progenitor cells (hNPCs) and SH-SY5Y cells by boosting miR-124 maturation. Importantly, ZIKV infection reduced the expression of Ku70 whereas increased expression of miR-124 in hNPCs, and led to morphologically neuronal differentiation. ConclusionOur study revealed a novel function of Ku70 as an RNA helicase and regulating miRNA maturation. The reduced expression of Ku70 with ZIKV infection increased the expression of miR-124 and led to the premature differentiation of embryonic neural progenitor cells, which might be one of the causes of microcephaly.

Result Analysis
Print
Save
E-mail