1.A comparison of delayed discount and personality characteristics between male impulsive and premeditated prisoners
Lijuan HAN ; Xulai ZHANG ; Gang JIA ; Su YUAN ; Nani CHEN ; Huping LUO ; Liqian ZHENG ; Chunyan ZHU ; Kai WANG
Chinese Journal of Behavioral Medicine and Brain Science 2018;27(12):1109-1113
Objective To explore the delayed discount and personality characteristics of impulsive and premeditated male prisoners and their correlation.Methods A total of 120 male prisoners with aggressive behaviors were tested by Self-made General Situation Questionnaire,Impulsive / Premeditated Aggression Scale (IPAS),NEO Five-Factor Inventory (NEO-FFI),Delay Discount Task (DDT).The effective participants were ninety,including 51 in impulsive group and 39 in premeditated group.Analyzed the difference of delayed discount and personality characteristics between the two group.Results (1) In the delayed discount task,the delay discount rat (K) of the impulsive violence group (0.0278 ± 0.0555) was significantly higher than that of the premeditated violence group (0.0042±0.0078).The difference was statistically significant (t=3.004,P =0.004).(2) The scores of agreeableness (35.84 ± 4.08) and conscientiousness (37.04±4.83) in impulsive violence group were lower than that in premeditated violence group(38.46±5.53,42.31±5.96),and the difference was statistically significant (t=-2.587,P=0.011;t =-4.634,P<0.01).(3) Correlation analysis showed that K value was not significantly correlated with all dimensions of the big five personality(P>0.05).Conclusion Male impulsive prisoners have faster tendency to delay discounting compared with male premeditated prisoners.Lower agreeableness and conscientiousness are the personality characteristics of male impulsive prisoners.
2.Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress
WANG JIAN ; SU LIQIAN ; ZHANG LUN ; ZENG JIALI ; CHEN QINGRU ; DENG RUI ; WANG ZIYAN ; KUANG WEIDONG ; JIN XIAOBAO ; GUI SHUIQING ; XU YINGHUA ; LU XUEMEI
Journal of Zhejiang University. Science. B 2022;23(6):481-501
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) that has become a major gastroenterologic problem during recent decades. Numerous complicating factors are involved in UC development such as oxidative stress, inflammation, and microbiota disorder. These factors exacerbate damage to the intestinal mucosal barrier. Spirulina platensis is a commercial alga with various biological activity that is widely used as a functional ingredient in food and beverage products. However, there have been few studies on the treatment of UC using S. platensis aqueous extracts (SP), and the underlying mechanism of action of SP against UC has not yet been elucidated. Herein, we aimed to investigate the modulatory effect of SP on microbiota disorders in UC mice and clarify the underlying mechanisms by which SP alleviates damage to the intestinal mucosal barrier. Dextran sulfate sodium (DSS) was used to establish a normal human colonic epithelial cell (NCM460) injury model and UC animal model. The mitochondrial membrane potential assay 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and Hoechst 33258 were carried out to determine the effects of SP on the NCM460 cell injury model. Moreover, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), western blot, and 16S ribosomal DNA (rDNA) sequencing were used to explore the effects and underlying mechanisms of action of SP on UC in C57BL/6 mice. In vitro studies showed that SP alleviated DSS-induced NCM460 cell injury. SP also significantly reduced the excessive generation of intracellular reactive oxygen species (ROS) and prevented mitochondrial membrane potential reduction after DSS challenge. In vivo studies indicated that SP administration could alleviate the severity of DSS-induced colonic mucosal damage compared with the control group. Inhibition of inflammation and oxidative stress was associated with increases in the activity of antioxidant enzymes and the expression of tight junction proteins (TJs) post-SP treatment. SP improved gut microbiota disorder mainly by increasing antioxidant enzyme activity and the expression of TJs in the colon. Our findings demonstrate that the protective effect of SP against UC is based on its inhibition of pro-inflammatory cytokine overproduction, inhibition of DSS-induced ROS production, and enhanced expression of antioxidant enzymes and TJs in the colonic mucosal barrier.
3.Spirulina platensis aqueous extracts ameliorate colonic mucosal damage and modulate gut microbiota disorder in mice with ulcerative colitis by inhibiting inflammation and oxidative stress.
Jian WANG ; Liqian SU ; Lun ZHANG ; Jiali ZENG ; Qingru CHEN ; Rui DENG ; Ziyan WANG ; Weidong KUANG ; Xiaobao JIN ; Shuiqing GUI ; Yinghua XU ; Xuemei LU
Journal of Zhejiang University. Science. B 2022;23(6):481-501
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) that has become a major gastroenterologic problem during recent decades. Numerous complicating factors are involved in UC development such as oxidative stress, inflammation, and microbiota disorder. These factors exacerbate damage to the intestinal mucosal barrier. Spirulina platensis is a commercial alga with various biological activity that is widely used as a functional ingredient in food and beverage products. However, there have been few studies on the treatment of UC using S. platensis aqueous extracts (SP), and the underlying mechanism of action of SP against UC has not yet been elucidated. Herein, we aimed to investigate the modulatory effect of SP on microbiota disorders in UC mice and clarify the underlying mechanisms by which SP alleviates damage to the intestinal mucosal barrier. Dextran sulfate sodium (DSS) was used to establish a normal human colonic epithelial cell (NCM460) injury model and UC animal model. The mitochondrial membrane potential assay 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) and Hoechst 33258 were carried out to determine the effects of SP on the NCM460 cell injury model. Moreover, hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), western blot, and 16S ribosomal DNA (rDNA) sequencing were used to explore the effects and underlying mechanisms of action of SP on UC in C57BL/6 mice. In vitro studies showed that SP alleviated DSS-induced NCM460 cell injury. SP also significantly reduced the excessive generation of intracellular reactive oxygen species (ROS) and prevented mitochondrial membrane potential reduction after DSS challenge. In vivo studies indicated that SP administration could alleviate the severity of DSS-induced colonic mucosal damage compared with the control group. Inhibition of inflammation and oxidative stress was associated with increases in the activity of antioxidant enzymes and the expression of tight junction proteins (TJs) post-SP treatment. SP improved gut microbiota disorder mainly by increasing antioxidant enzyme activity and the expression of TJs in the colon. Our findings demonstrate that the protective effect of SP against UC is based on its inhibition of pro-inflammatory cytokine overproduction, inhibition of DSS-induced ROS production, and enhanced expression of antioxidant enzymes and TJs in the colonic mucosal barrier.
Animals
;
Antioxidants/pharmacology*
;
Colitis/prevention & control*
;
Colitis, Ulcerative/metabolism*
;
Colon/metabolism*
;
Dextran Sulfate/toxicity*
;
Disease Models, Animal
;
Gastrointestinal Microbiome
;
Inflammation/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
Spirulina