1.Palmitoylome profiling indicates that androgens promote the palmitoylation of metabolism-related proteins in prostate cancer-derived LNCaP cells.
Wen Qing LI ; Si Mei REN ; Xing Bo LONG ; Yu Qing TIAN
Journal of Peking University(Health Sciences) 2020;52(2):227-233
OBJECTIVE:
To explore potential therapeutic targets other than androgen-deprivation treatment for prostate cancer by screening the proteins induced by androgen at palmitoylation modification level in LNCaP cells.
METHODS:
The LNCaP cells were treated with androgen (Methyltrienolone, R1881, 5 nmol/L) or dimethyl sulfoxide (DMSO) for 24 h, and then labeled with alkynyl palmitic acid Alk-C16 (100 μmol/L). After that, the cells were collected, lysed, the total protein was extracted, agarose beads labeled with azide (1 mmol/L) were added, and the click-chemistry reaction was carried out at room temperature for 1 h. The covalent bond formed by click-chemistry reaction of azide and alkynyl group was used to enrich the palmitoylated proteins on agarose beads. Label-free quantitation (LFQ) was used to compare the protein palmitoylation level of R1881 treated and untreated cells to screen the proteins induced by androgen at palmitoylation modification level.
RESULTS:
In this experiment, 907 potential palmitoylated proteins (mascot score>2, P<0.05) were identified, among which 430 proteins had LFQ values not zero at least twice. Among the 430 proteins, the palmitoylation levels of 92 candidates were increased by androgen treatment, and their LFQ values were significantly upregulated (>1.5-fold, P<0.05) in ≥2 samples of androgen-treated vs. untreated LNCaP cells. We also used the software of cytoscape to classify the 92 proteins, and found that the known functional proteins of them could be divided into three categories: metabolism related, protein folding related and translation initiation related. Among them, metabolism related proteins included lipid metabolism (6), glucose metabolism (7) and respiratory electron transport chain (8), and a small amount of amino acid metabolism (2) and other metabolism related proteins (2). Notably, the ratio of LFQ of cytochrome b-c1 complex subunit 2 (UQCRC2) was significantly (>3-fold, P<0.05) higher in androgen-treated cells compared with untreated cells, indicating that the palmitoylation level of UQCRC2 was enhanced by androgen most significantly than that of others. The second was long-chain acyl CoA dehydrogenase (ACADVL) related to lipid metabolism and glucose 6-phosphate dehydrogenase (PGD) related to glucose metabolism, but the LFQ ratio of them was less than 3-fold.
CONCLUSION
The research on palmitoylation mechanism of metabolism, especially the proteins related to respiratory electron transport chain, will provide a new guidance for the diagnosis and treatment of prostate cancer and the development of targeted drugs.
Androgen Antagonists
;
Androgens
;
Humans
;
Lipoylation
;
Male
;
Prostatic Neoplasms
2.Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis.
Xiaohan ZHANG ; Kyeong Man KIM
Biomolecules & Therapeutics 2017;25(1):26-43
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Binding Sites
;
Cell Membrane
;
Cooperative Behavior
;
Endocytosis*
;
Glycosylation
;
Guanosine
;
Humans
;
Lipoylation
;
Phosphorylation
;
Protein Processing, Post-Translational
3.Effect of Porphyromonas gingivalis infection on IFNGR1 palmitoylation in esophageal cancer cells.
Liuqing SHEN ; Dingyu ZHANG ; Shegan GAO
Journal of Southern Medical University 2023;43(7):1155-1163
OBJECTIVE:
To investigate the effect of Porphyromonas gingivalis (Pg) infection on IFNGR1 palmitoylation and biological behaviors of esophageal squamous cell carcinoma (ESCC) cells and the clinical implications.
METHODS:
The expression levels of IFNGR1 protein in ESCC cell lines KYSE30 and KYSE70 were detected using Western blotting at 24 and 48 h after Pg infection, and 2-BP was used to detect IFNGR1 palmitoylation in the cells. KYSE70 cells with wild-type IFNGR1 (IFNGR1-WT cells) and with IFNGR1-C122A palmitoylation site mutation induced by site-specific mutagenesis (IFNGR1-C122A cells) were both infected with Pg, and the changes in palmitoylation of IFNGR1-C122A were analyzed using immunofluorescence and Click-iT assays. The changes in proliferation, migration and invasion ability of the infected cells were evaluated using plate cloning assay, scratch assay and Transwell assay, and IFNGR1 co-localization with lysosomal marker LAMP2 was dected using immunofluorescence assay. Immunohistochemistry was used to detect Pg infection and IFNGR1 protein expression in 50 ESCC tissues, and their correlation with the clinicopathological characteristics and survival outcomes of the patients was analyzed.
RESULTS:
Pg infection down-regulated the protein expression of IFNGR1 in ESCC and promoted IFNGR1 palmitoylation at site 122. In IFNGR1-WT cells, Pg infection significantly enhanced cell proliferation, migration and invasion (P < 0.05). Similarly, Pg also significantly promoted proliferation, migration and invasion of IFNGR1-C122A cells, but to a lesser extent as compared with the wild-type cells (P < 0.05). Immunofluorescence assay showed that Pg and ZDHHC3 promoted IFNGR1 degradation within the lysosome. Immunohistochemical studies of the ESCC tissue samples showed a negative correlation between IFNGR1 and Pg expression, and a reduced IFNGR1 expression was correlated with a poorer survival outcome of the patient.
CONCLUSION
Pg infection enhances IFNGR1 palmitoylation to promote progression of ESCC, and elimination of Pg and inhibiting IFNGR1 palmitoylation may effectively control ESCC progression.
Humans
;
Esophageal Neoplasms
;
Porphyromonas gingivalis
;
Lipoylation
;
Esophageal Squamous Cell Carcinoma
;
Lysosomes
4.Palmitoylation of heat shock protein 90 in mouse sperm.
Rui LI ; Kun LI ; Yue YANG ; Pei-Bei SUN ; Ai-Jun CHEN ; Ya NI
Acta Physiologica Sinica 2017;69(3):298-304
Protein palmitoylation, one of post-translation modifications, refers to the addition of saturated 16-carbon palmitic acid to cysteine residues via the thioester bond. It plays key roles in various functional activities, such as the interaction, stability and location of proteins. Heat shock protein 90 (Hsp90), an important molecular chaperone, has been reported to be involved in sperm capacitation. However, it remains unclear whether protein palmitoylation exists in sperm and whether Hsp90 in sperm is palmitoylated under different physiological conditions. In this study, we examined whether the protein palmitoylation is present in mouse cauda epididymis sperm using acyl-biotin exchange method, predicted the potential palmitoylated sites of Hsp90 by the software CSS-Palm 4.0 and detected the palmitoylated Hsp90 in the mouse sperm from caput epididymis and cauda epididymis by immunoprecipitation. We found that some proteins, approximately 50, 65, 72, 85 and 130 kDa, were palmitoylated in mouse cauda epididymis sperm. Five sites in two Hsp90 isoforms were predicted to be palmitoylated. The results also showed that Hsp90 in mouse sperm was palmitoylated and its palmitoylation level was involved in different physiological conditions: the palmitoylation level of cauda epididymis sperm was higher than that of caput epididymis sperm; and the palmitoylation level after capacitation was much higher than that before capacitation. In conclusion, this study reveals that protein palmitoylation is present in mouse sperm and the palmitoylated Hsp90 is associated with different physiological conditions in sperm.
Animals
;
Epididymis
;
HSP90 Heat-Shock Proteins
;
metabolism
;
Lipoylation
;
Male
;
Mice
;
Palmitic Acid
;
chemistry
;
Sperm Capacitation
;
Spermatozoa
;
metabolism
5.Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma.
Yan ZHANG ; Baoyuan ZHANG ; Yongyun LI ; Yuting DAI ; Jiaoyang LI ; Donghe LI ; Zhizhou XIA ; Jianming ZHANG ; Ping LIU ; Ming CHEN ; Bo JIAO ; Ruibao REN
Frontiers of Medicine 2022;16(5):784-798
More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.
Humans
;
Mice
;
Animals
;
Lipoylation
;
NIH 3T3 Cells
;
Uveal Neoplasms/genetics*
;
Melanoma/genetics*
;
Cell Proliferation
;
Proto-Oncogene Proteins c-bcl-2
;
GTP-Binding Protein alpha Subunits, Gq-G11/genetics*
6.ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification.
Wenle YE ; Jinghan WANG ; Jiansong HUANG ; Xiao HE ; Zhixin MA ; Xia LI ; Xin HUANG ; Fenglin LI ; Shujuan HUANG ; Jiajia PAN ; Jingrui JIN ; Qing LING ; Yungui WANG ; Yongping YU ; Jie SUN ; Jie JIN
Frontiers of Medicine 2023;17(4):685-698
Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/β-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis
;
beta Catenin/metabolism*
;
Biomarkers, Tumor/metabolism*
;
Cell Line, Tumor
;
Coenzyme A Ligases/metabolism*
;
Leukemia, Myeloid, Acute/metabolism*
;
Lipoylation
;
Prognosis
;
Wnt Signaling Pathway