1.Effect of lipoxin A₄ on IL-1β production of monocytes and its possible mechanism in severe preeclampsia.
Jianfang WANG ; Yinping HUANG ; Yanjun HUANG ; Jie ZHOU ; Xiaoli LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2010;30(6):767-770
This study examined in vitro effect of lipoxin A(4) (LXA(4)) on interleukin-1β (IL-1β) production of monocytes and its possible mechanism in severe preeclampsia (PE). Peripheral venous blood was drawn from 15 patients with severe preeclampsia (PE group) and 20 normal pregnant women (control group) to prepare monocytes which were then treated with LXA(4) at different concentrations of 0, 10, 100 nmol/L respectively. IL-1β level in the supernatant of monocytes was detected by enzyme linked immunoassay. The [Ca(2+)](i) of monocytes was measured by laser scanning confocal microscopy. The results showed that the IL-1β level and the [Ca(2+)](i) of monocytes in the PE group were significantly higher than those in the control group. LXA(4) significantly decreased the generation of IL-1β in a dose-dependent manner in the PE group. After treatment with 100-nmol/L LXA(4), in the PE group, the [Ca(2+)](i) concentration of monocytes was significantly reduced. It was concluded that LXA(4) may inhibit the IL-1β production of monocytes from severe preeclampsia women by inhibiting extracellular calcium influx.
Adult
;
Anti-Inflammatory Agents, Non-Steroidal
;
pharmacology
;
Calcium
;
metabolism
;
Cells, Cultured
;
Female
;
Humans
;
Interleukin-1beta
;
biosynthesis
;
Lipoxins
;
pharmacology
;
Monocytes
;
cytology
;
metabolism
;
Pre-Eclampsia
;
blood
;
physiopathology
;
Pregnancy
2.Lipoxin A4 negatively regulates lipopolysaccharide-induced differentiation of RAW264.7 murine macrophages into dendritic-like cells.
Li ZHANG ; Ping WU ; Sheng-wei JIN ; Ping YUAN ; Jing-yuan WAN ; Xiao-yan ZHOU ; Wei XIONG ; Feng FANG ; Du-yun YE
Chinese Medical Journal 2007;120(11):981-987
BACKGROUNDLipoxins (LXs), endogenous anti-inflammatory and pro-resolving eicosanoids generated during various inflammatory conditions, have novel immunomodulatory properties. Because dendritic cells (DCs) play crucial roles in the initiation and maintenance of immune response, we determined whether LXs could modulate the maturation process of DCs and investigated the effects of lipoxin A(4) (LXA(4)) on lipopolysaccharide (LPS)-induced differentiation of RAW264.7 cells into dendritic-like cells.
METHODSRAW264.7 cells were cultured in vitro with 1 microg/ml LPS in the absence or presence of LXA(4) for 24 hours, and cellular surface markers (MHC-II, CD80 (B7-1), CD86 (B7-2)) were measured by flow cytometry (FCM). Mixed lymphocyte reaction was performed to evaluate the allostimulatory activity. Cytoplastic IkappaB degradation and nuclear factor kappa B (NF-kappaB) translocation were detected by Western blotting. Luciferase reporter plasmid was transiently transfected into RAW264.7 cells, and luciferase activity was determined to measure the transcriptional activity of NF-kappaB.
RESULTSLXA(4) reduced the ratio of LPS-treated RAW264.7 cells to DCs with morphological characteristics and inhibited the expression of MHC II. LPS-induced up-regulation of CD86 was moderately suppressed by LXA(4) but no obvious change of CD80 was observed. Moreover, LXA(4) weakened the allostimulatory activity of LPS-treated RAW264.7 cells. These alterations of LPS+LXA(4)-treated cells were associated with a marked inhibition of IkappaB degradation, NF-kappaB translocation and then the transcriptional activity of NF-kappaB.
CONCLUSIONSLXA(4) negatively regulates LPS-induced differentiation of RAW264.7 cells into dendritic-like cells. This activity reveals an undescribed mechanism of LXA(4) to prevent excessive and sustained immune reaction by regulating maturation of DCs.
Animals ; Biological Transport ; drug effects ; Cell Differentiation ; drug effects ; Cells, Cultured ; Dendritic Cells ; cytology ; I-kappa B Kinase ; metabolism ; Lipopolysaccharides ; pharmacology ; Lipoxins ; pharmacology ; Macrophages ; cytology ; drug effects ; Mice ; NF-kappa B ; metabolism ; Phenotype ; Transcription, Genetic ; drug effects
3.Lipoxin A4 Ameliorates Lipopolysaccharide-Induced A549 Cell Injury through Upregulation of N-myc Downstream-Regulated Gene-1.
Jun-Zhi ZHANG ; Zhan-Li LIU ; Yao-Xian ZHANG ; Hai-Jiu LIN ; Zhong-Jun ZHANG
Chinese Medical Journal 2018;131(11):1342-1348
BackgroundLipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALI) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lung epithelial cells. However, how LXA4 promote ENaC expression is still largely elusive. The present study aimed to explore genes and signaling pathway involved in regulating ENaC expression induced by LXA4.
MethodsA549 cells were incubated with LPS and LXA4, or in combination, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) of ENaC-α/γ. Candidate genes affected by LXA4 were explored by transcriptome sequencing of A549 cells. The critical candidate gene was validated by qRT-PCR and Western blot analysis of A549 cells treated with LPS and LXA4 at different concentrations and time intervals. LXA4 receptor (ALX) inhibitor BOC-2 was used to test induction of candidate gene by LXA4. Candidate gene siRNA was adopted to analyze its influence on A549 viability and ENaC-α expression. Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was utilized to probe whether the PI3K signaling pathway was involved in LXA4 induction of candidate gene expression.
ResultsThe A549 cell models of ALI were constructed and subjected to transcriptome sequencing. Among candidate genes, N-myc downstream-regulated gene-1 (NDRG1) was validated by real-time-PCR and Western blot. NDRG1 mRNA was elevated in a dose-dependent manner of LXA4, whereas BOC-2 antagonized NDRG1 expression induced by LXA4. NDRG1 siRNA suppressed viability of LPS-treated A549 cells (treatment vs. control, 0.605 ± 0.063 vs. 0.878 ± 0.083, P = 0.040) and ENaC-α expression (treatment vs. control, 0.458 ± 0.038 vs. 0.711 ± 0.035, P = 0.008). LY294002 inhibited NDRG1 (treatment vs. control, 0.459 ± 0.023 vs. 0.726 ± 0.020, P = 0.001) and ENaC-α (treatment vs. control, 0.236 ± 0.021 vs. 0.814 ± 0.025, P < 0.001) expressions and serum- and glucocorticoid-inducible kinase 1 phosphorylation (treatment vs. control, 0.442 ± 0.024 vs. 1.046 ± 0.082, P = 0.002), indicating the PI3K signaling pathway was involved in regulating NDRG1 expression induced by LXA4.
ConclusionOur research uncovered a critical role of NDRG1 in LXA4 alleviation of LPS-induced A549 cell injury through mediating PI3K signaling to restore ENaC expression.
A549 Cells ; Acute Lung Injury ; metabolism ; Cell Cycle Proteins ; metabolism ; Cell Line ; Epithelial Sodium Channels ; metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; metabolism ; Lipopolysaccharides ; pharmacology ; Lipoxins ; pharmacology ; Signal Transduction ; drug effects
4.Transfection of Lipoxin A4 receptor-like protein gene enhanced the inhibitory effect of Lipoxin A4 on human lung fibroblasts proliferation induced by connective tissue growth factor.
Chao LU ; Ji-qing CHEN ; Sheng-hua WU ; Yuan-jun WU ; Fei ZHAO ; Xiao-qin PAN ; Li FEI ; Mei GUO ; Song-ming HUANG ; Xi-rong GUO ; Rong-hua CHEN
Chinese Journal of Pediatrics 2005;43(4):288-292
OBJECTIVELipoxin A(4) is formed by the metabolism of arachidonic acid. Anti-inflammatory and anti-proliferative effect of lipoxin A(4) has been shown in many human diseases. Recently, as a novel high affinity receptor for ligand lipoxin A(4), Lipoxin A(4) receptor-like protein (LRLP) has been identified. Currently close attention is paid to the important contribution of connective tissue growth factor (CTGF) in lung fibrosis. The purpose of the study was to transfect LRLP gene into human lung fibroblasts and investigate the mechanism of its enhancing antagonistic effect of Lipoxin A(4) on human lung fibroblasts proliferation induced by connective tissue growth factor.
METHODSEukaryocytic expression vector pEGFP/LRLP which contained LRLP and green fluorescence protein fusion gene (GFP) was constructed and transfected into human lung fibroblasts (HLF). After selecting with G418, HLF/LRLP cell clone which stably expressed LRLP/GFP fusion protein was isolated and characterized by the laser scanning confocal microscope. Cultured HLF and HLF/LRLP were stimulated for 24 h with CTGF (1 microg/ml) in the presence and absence of pretreatment of Lipoxin A(4) (10.0 nmol/L) for 30 min. Inhibition of cell proliferation was determined by MTT assay. Cell cycle analysis was performed by flow cytometry. Western blot was used to detect the expression of cyclin D(1) protein. Electrophoretic mobility shift assay (EMSA) was employed to detect the DNA binding activity of STAT(3).
RESULTS(1) HLF/LRLP cell clone which stably expressed LRLP and GFP fusion protein was successfully obtained. (2) Proliferation of HLF and HLF/LRLP was induced by 1 microg/ml CTGF. Pretreatment with 10 nm Lipoxin A(4) inhibited the proliferation of HLF and HLF/LRLP. And the inhibitory rate of HLF/LRLP was significantly higher than that of HLF [(54.1 +/- 4.2)%, (21.2 +/- 3.7)%, P < 0.05]. (3) The flow cytometry analysis showed that compared with HLF, more HLF/LRLP were arrested at G(0)/G(1) phase in the presence of pretreatment of Lipoxin A(4). [(76.3 +/- 3.5)%, (60.8 +/- 2.0)%, P < 0.05]. (4) Ten nmol/L Lipoxin A(4) antagonized CTGF induced increase of cyclin D(1) protein expression in HLF and HLF/LRLP. And its antagonistic effect on HLR/LRLP was stronger than that on HLF (P < 0.05). (5) Ten nmol/L Lipoxin A(4) antagonized CTGF induced increase of STAT(3) DNA binding activity, and its antagonistic effect on HLF/LRLP was more powerful than that on HLF (P < 0.05).
CONCLUSIONSTransfection of Lipoxin A(4) receptor-like protein gene enhanced the inhibitory effect of Lipoxin A(4) on human lung fibroblasts proliferation induced by CTGF. Its mechanism might be related to regulation of cyclin D(1) protein expression and STAT(3) DNA binding activity.
Connective Tissue Growth Factor ; antagonists & inhibitors ; Cyclin D1 ; analysis ; DNA ; metabolism ; Fibroblasts ; cytology ; drug effects ; Humans ; Lipoxins ; pharmacology ; Lung ; cytology ; drug effects ; Receptors, Formyl Peptide ; genetics ; physiology ; Receptors, Lipoxin ; genetics ; physiology ; STAT3 Transcription Factor ; metabolism ; Transfection
5.Lipoxin A4 inhibits lipopolysaccharide-induced production of inflammatory cytokines in keratinocytes by up-regulating SOCS2 and down-regulating TRAF6.
Feng HU ; Ai-Ping FENG ; Xin-Xin LIU ; Song ZHANG ; Jun-Tao XU ; Xin WANG ; Xue-Lian ZHONG ; Meng-Wen HE ; Hong-Xiang CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(3):426-431
Liopxin A4 (LXA4) is considered to be a crucial modulator in the inflammatory responses. In the present study, we aimed to study the effect of LXA4 on the inflammatory cytokines production induced by lipopolysaccharide (LPS) and the possible mechanism in normal human epidermal keratinocytes (NHEKs). NHEKs were isolated and cultured. The expression of toll-like receptor 4 (TLR4), LXA4 receptor (ALXR) and aryl hydrocarbon receptor (AhR) in NHEKs was detected by reverse transcription polymerase chain reaction (RT-PCR). The mRNA and protein levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were determined in NHEKs stimulated by LPS (10 μg/mL) with or without preincubation with LXA4 (100 nmol/L) for 30 min by real-time quantitative PCR (real-time qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The expression levels of tumor necrosis factor receptor-associated factor 6 (TRAF6) and suppressors of cytokine signaling 2 (SOCS2) mRNAs and proteins, and nuclear translocation of NF-kB-p65 were measured by real-time qPCR and Western blotting, respectively. The results showed that NHEKs expressed TLR4, ALXR and AhR. LXA4 significantly inhibited the mRNA and protein expression levels of TNF-α, IL-1β and TRAF6 induced by LPS in NHEKs, and LXA4 obviously increased the expression of SOCS2 at mRNA and protein levels. The nuclear NF-kB-p65 protein expression induced by LPS was inhibited after preincubation with LXA4 in NHEKs. It was concluded that LXA4 inhibits the LPS-induced production of TNF-α and IL-1β in NHEKs by up-regulating SOCS2 and down-regulating TRAF6.
Anti-Inflammatory Agents, Non-Steroidal
;
pharmacology
;
Cells, Cultured
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Keratinocytes
;
Lipopolysaccharides
;
pharmacology
;
Lipoxins
;
pharmacology
;
NF-kappa B
;
genetics
;
metabolism
;
Suppressor of Cytokine Signaling Proteins
;
genetics
;
metabolism
;
TNF Receptor-Associated Factor 6
;
genetics
;
metabolism
;
Toll-Like Receptor 4
;
genetics
;
metabolism
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
6.Lipoxin A4 improves erectile dysfunction in rats with type I diabetes by inhibiting oxidative stress and corporal fibrosis.
Kai CUI ; Zhe TANG ; Chuan-Chang LI ; Tao WANG ; Ke RAO ; Shao-Gang WANG ; Ji-Hong LIU ; Zhong CHEN
Asian Journal of Andrology 2018;20(2):166-172
Previous studies have shown that oxidative stress and corporal fibrosis in penile tissues of rats were key pathological factors of erectile dysfunction induced by diabetic mellitus (DMED). Lipoxin A4 (LXA4) was reported to inhibit oxidative stress and fibrosis diseases, while whether it could exert a protective role on erectile function was not clear. Type I diabetic mellitus (DM) was induced in thirty male 10-week-old Sprague-Dawley rats using streptozotocin. Ten weeks later, twenty-two rats with DMED confirmed by an apomorphine test were divided into two groups: the DMED group (n = 11) and the DMED + LXA4 group (n = 11; LXA4 injection daily for 4 weeks). In addition, another ten age-matched rats formed the Control group. We found that erectile function was significantly impaired in the DMED group compared with the Control group, but was improved in the DMED + LXA4 group. Similarly, the over-activated oxidative stress and impaired endothelial function in the DMED group were both improved in the DMED + LXA4 group. Moreover, the DMED group showed serious corporal fibrosis, which was also inhibited by the treatment of LXA4 in the DMED + LXA4 group. Taken together, LXA4 could exert an inhibition role on oxidative stress and fibrosis to improve DMED effectively.
Actins/metabolism*
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/pharmacology*
;
Diabetes Mellitus, Experimental/physiopathology*
;
Diabetes Mellitus, Type 1/physiopathology*
;
Erectile Dysfunction/physiopathology*
;
Fibrosis
;
Lipoxins/pharmacology*
;
Male
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Oxidative Stress/drug effects*
;
Penile Erection/drug effects*
;
Penis/pathology*
;
Rats
;
Rats, Sprague-Dawley