1.Combination of fenofibrate and rosiglitazone synergistically ameliorate dyslipidemia and insulin resistance in mice with MSG metabolic syndrome.
Wei CHEN ; Li-Hong ZHANG ; Hong-Ying LIU ; Xin-Bo ZHOU ; Li-Li WANG
Acta Pharmaceutica Sinica 2010;45(11):1459-1466
11-beta-Hydroxysteroid Dehydrogenase Type 1
;
genetics
;
metabolism
;
Adipose Tissue, White
;
drug effects
;
Animals
;
Animals, Newborn
;
Blood Glucose
;
metabolism
;
Body Weight
;
drug effects
;
Drug Synergism
;
Eating
;
drug effects
;
Fenofibrate
;
pharmacology
;
Hypoglycemic Agents
;
pharmacology
;
Hypolipidemic Agents
;
pharmacology
;
Insulin Resistance
;
Lipids
;
blood
;
Lipoprotein Lipase
;
genetics
;
metabolism
;
Liver
;
drug effects
;
Metabolic Syndrome
;
chemically induced
;
metabolism
;
pathology
;
Mice
;
Mice, Inbred ICR
;
RNA, Messenger
;
metabolism
;
Sodium Glutamate
;
Thiazolidinediones
;
pharmacology
2.Retinoic acid inhibits inducible nitric oxide synthase expression in 3T3-L1 adipocytes.
Jeong Yeh YANG ; Bon Sun KOO ; Mi Kyung KANG ; Hye Won RHO ; Hee Sook SOHN ; Eun Chung JHEE ; Jin Woo PARK
Experimental & Molecular Medicine 2002;34(5):353-360
The present study was undertaken to explore whether retinoids, which are known to have immunomodulatory actions, could attenuate tumor necrosis factor-alpha (TNF)-stimulated inducible nitric oxide synthase (iNOS) expression in 3T3-L1 adipocytes. Adipocytes incubated with TNF induced dose- and time-dependent accumulation of nitrite in the culture medium through the iNOS induction as confirmed by Western blotting. Treatment of cells with TNF in the presence of all-trans-retinoic acid (RA) significantly decreased their ability to produce nitrite and iNOS induction. Both 13-cis- and all- trans-RA-induced suppression was dose-dependent, and all-trans-RA was somewhat potent than 13-cis-RA. The inhibitory effect of RA on TNF-induced iNOS induction was reversible, completely recovered after 2 days, and was exerted through the inhibition of NF-kappaB activation. TNF also suppressed the lipoprotein lipase (LPL) activity of 3T3-L1 adipocytes. RA could not reverse the TNF- induced LPL suppression at RA levels causing near complete inhibition of the TNF-induced NO production. These results indicate that RAs attenuate iNOS expression reversibly in TNF-stimulated 3T3-L1 adipocytes, and that the TNF- induced LPL suppression is not the result of NO overproduction.
3T3 Cells
;
Adipocytes/drug effects/*enzymology/metabolism
;
Animals
;
Cells, Cultured
;
Enzyme Induction/drug effects
;
Enzyme Inhibitors/pharmacology
;
Lipoprotein Lipase/drug effects/metabolism
;
Mice
;
NF-kappa B/antagonists & inhibitors
;
Nitric Oxide/metabolism
;
Nitric-Oxide Synthase/*antagonists & inhibitors/*metabolism
;
Tretinoin/*pharmacology
;
Tumor Necrosis Factor/pharmacology
3.The N- and C-terminal domains of parathyroid hormone-related protein affect differently the osteogenic and adipogenic potential of human mesenchymal stem cells.
Antonio CASADO-DIAZ ; Raquel SANTIAGO-MORA ; Jose Manuel QUESADA
Experimental & Molecular Medicine 2010;42(2):87-98
Parathyroid hormone-related protein (PTHrP) is synthesized by diverse tissues, and its processing produces several fragments, each with apparently distinct autocrine and paracrine bioactivities. In bone, PTHrP appears to modulate bone formation in part through promoting osteoblast differentiation. The putative effect of PTH-like and PTH-unrelated fragments of PTHrP on human mesenchymal stem cell (MSCs) is not well known. Human MSCs were treated with PTHrP (1-36) or PTHrP (107-139) or both (each at 10 nM) in osteogenic or adipogenic medium, from the start or after 6 days of exposure to the corresponding medium, and the expression of several osteoblastogenic and adipogenic markers was analyzed. PTHrP (1-36) inhibited adipogenesis in MSCs and favoured the expression of osteogenic early markers. The opposite was observed with treatment of MSCs with PTHrP (107-139). Moreover, inhibition of the adipogenic differentiation by PTHrP (1-36) prevailed in the presence of PTHrP (107-139). The PTH/PTHrP type 1 receptor (PTH1R) gene expression was maximum in the earlier and later stages of osteogenesis and adipogenesis, respectively. While PTHrP (107-139) did not modify the PTH1R overexpression during adipogenesis, PTHrP (1-36) did inhibit it; an effect which was partially affected by PTHrP (7-34), a PTH1R antagonist, at 1 microM. These findings demonstrate that both PTHrP domains can exert varying effects on human MSCs differentiation. PTHrP (107-139) showed a tendency to favor adipogenesis, while PTHrP (1-36) induced a mild osteogenic effect in these cells, and inhibited their adipocytic commitment. This further supports the potential anabolic action of the latter peptide in humans.
Adipogenesis/drug effects
;
Alkaline Phosphatase/biosynthesis/genetics
;
Antigens, Differentiation/biosynthesis/genetics
;
Bone Marrow/pathology
;
Cell Differentiation/drug effects
;
Cells, Cultured
;
Core Binding Factor Alpha 1 Subunit/biosynthesis/genetics
;
Culture Media
;
Gene Expression Regulation
;
Humans
;
Lipoprotein Lipase/biosynthesis/genetics
;
Mesenchymal Stem Cells/*drug effects/metabolism/pathology
;
Osteoblasts/drug effects/*metabolism/pathology
;
Osteogenesis/drug effects
;
PPAR gamma/biosynthesis/genetics
;
Parathyroid Hormone/*pharmacology
;
Peptide Fragments/*pharmacology
;
Receptor, Parathyroid Hormone, Type 1/antagonists & inhibitors
4.Hypotriglyceridemic effects of apple polyphenols extract via up-regulation of lipoprotein lipase in triton WR-1339-induced mice.
Nan YAO ; Rong-rong HE ; Xiao-hui ZENG ; Xue-jun HUANG ; Tie-liang DU ; Jing-chao CUI ; Kurihara HIROSHI
Chinese journal of integrative medicine 2014;20(1):31-35
OBJECTIVETo investigate the anti-hyperlipidemic effects of apple polyphenols extract (APE) in Triton WR-1339-induced endogenous hyperlipidemic model.
METHODSFirstly, APE was isolated and purified from the pomace of Red Fuji Apple and contents of individual polyphenols in APE were determined using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Secondly, forty male National Institude of Health (NIH) mice were randomly divided into 5 groups with 8 animals in each group. The Fenofibrate Capsules (FC) group and APE groups received oral administration of respective drugs for 7 consecutive days. All mice except those in the normal group were intravenously injected through tail vein with Triton WR-1339 on the 6th day. Serum and livers from all the mice were obtained 18 h after the injection. The changes in serum total cholesterol (TC), triglyceride (TG), lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were measured by respective kits. Finally, expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) mRNA was measured by real-time reverse transcription-polymerase chain reaction (RT-PCR) method. RESULTS SERUM TC AND TG LEVELS SIGNIFICANTLY INCREASED IN TRITON WR-1339-INDUCED MODEL GROUP COMPARED WITH THE NORMAL GROUP (P<0.01). ORAL ADMINISTRATION OF APE [200 AND 400 MG/(KG DAY)] DOSE-DEPENDENTLY REDUCED THE SERUM LEVEL OF TG IN HYPERLIPIDEMIC MICE (P<0.01). SERUM LPL AND HTGL ACTIVITIES SIGNIFICANTLY DECREASED IN TRITON WR-1339-INDUCED MODEL GROUP COMPARED WITH THE NORMAL GROUP (P<0.05). ORAL ADMINISTRATION OF APE [200 AND 400 MG/(KG DAY)] DOSE-DEPENDENTLY ELEVATED THE SERUM ACTIVITY OF LPL IN HYPERLIPIDEMIC MICE (P<0.05 OR P<0.01). FURTHERMORE, COMPARED WITH THE NORMAL GROUP, HEPATIC MRNA LEVEL OF PPARα IN THE MODEL GROUP SIGNIFICANTLY DECREASED (P<0.01). ORAL ADMINISTRATION OF APE [200 AND 400 MG/(KG DAY)] DOSE-DEPENDENTLY ELEVATED THE EXPRESSION OF PPARα IN HYPERLIPIDEMIC MICE (P<0.05 OR P<0.01):
CONCLUSIONAPE could reduce TG level via up-regulation of LPL activity, which provides new evidence to elucidate the anti-hyperlipidemic effects of APE.
Animals ; Chlorogenic Acid ; pharmacology ; therapeutic use ; Cholesterol ; blood ; Flavonoids ; pharmacology ; therapeutic use ; Hyperlipidemias ; blood ; drug therapy ; enzymology ; pathology ; Hypolipidemic Agents ; pharmacology ; Lipoprotein Lipase ; blood ; genetics ; Male ; Mice ; PPAR alpha ; genetics ; metabolism ; Phytotherapy ; Polyethylene Glycols ; RNA, Messenger ; genetics ; metabolism ; Tannins ; pharmacology ; therapeutic use ; Triglycerides ; blood ; Up-Regulation ; drug effects