1. Phenotypic and genotypic features of twenty children with classic pantothenate kinase-associated neurodegeneration
Ji ZHOU ; Jing HE ; Liping KOU ; Hongchun FENG ; Yanhua DENG ; Zhongbin ZHANG ; Ling ZHOU ; Jingmin WANG ; Yuwu JIANG ; Ye WU
Chinese Journal of Pediatrics 2017;55(9):678-682
Objective:
To explore the phenotypic and genotypic characteristics in Chinese children with classic pantothenate kinase-associated neurodegeneration (PKAN).
Method:
The clinical, radiographic and genetic data of all PKAN patients diagnosed at pediatric department of Peking University First Hospital from November 2006 to December 2016 were retrospectively collected and analyzed.
Result:
Twenty patients with classic PKAN were included in the study. The median age at onset was 3.5 years (ranging from 1.0 to 10.0 years), and the most common initial symptom was gait disturbance (16 cases). At the last evaluation, the clinical features were limbs dystonia (20 cases), dysarthria (16 cases), dysphagia (11 cases), pyramidal sign (7 cases), mental regression (3 cases) and pigmentary retinopathy (5 cases). For those classic PKAN patients, the median time from onset of disease to loss of independent ambulation was 6.9 years (ranging from 2.0 to 12.0 years). Imaging data showed, except "eye of tiger" in MRI (19 cases), globus pallidus calcification in CT was also found in four patients. In gene testing, 26 different mutations in PANK2 gene were identified, and 16 of 26 were novel mutations. Moreover, c. 1502T>C (p.Ile501Asn) was the most common mutation (4 cases).
Conclusion
Dystonia is the major neurologic feature of classic PKAN. Disease progression is rapid, with loss of independent ambulation within 10 years after onset. Except "eye of tiger" in MRI, globus pallidus calcification in CT may be another imaging feature of PKAN.Sixteen novel mutations of PANK2 gene were identified in the study.
2.Self-sufficient nanoparticles with dual-enzyme activity trigger radical storms and activate cascade-amplified antitumor immunologic responses.
Liping BAI ; Jin YANG ; Siting YU ; Zhongzheng XIANG ; Yuanyuan ZENG ; Meiling SHEN ; Xiaorong KOU ; Qinjie WU ; Changyang GONG
Acta Pharmaceutica Sinica B 2024;14(2):821-835
Radiotherapy (RT) can potentially induce systemic immune responses by initiating immunogenic cell death (ICD) of tumor cells. However, RT-induced antitumor immunologic responses are sporadic and insufficient against cancer metastases. Herein, we construct multifunctional self-sufficient nanoparticles (MARS) with dual-enzyme activity (GOx and peroxidase-like) to trigger radical storms and activate the cascade-amplified systemic immune responses to suppress both local tumors and metastatic relapse. In addition to limiting the Warburg effect to actualize starvation therapy, MARS catalyzes glucose to produce hydrogen peroxide (H2O2), which is then used in the Cu+-mediated Fenton-like reaction and RT sensitization. RT and chemodynamic therapy produce reactive oxygen species in the form of radical storms, which have a robust ICD impact on mobilizing the immune system. Thus, when MARS is combined with RT, potent systemic antitumor immunity can be generated by activating antigen-presenting cells, promoting dendritic cells maturation, increasing the infiltration of cytotoxic T lymphocytes, and reprogramming the immunosuppressive tumor microenvironment. Furthermore, the synergistic therapy of RT and MARS effectively suppresses local tumor growth, increases mouse longevity, and results in a 90% reduction in lung metastasis and postoperative recurrence. Overall, we provide a viable approach to treating cancer by inducing radical storms and activating cascade-amplified systemic immunity.