1.Efficacy of "Biaoben acupoint compatibility" moxibustion for abdominal obesity and its effect on lipid accumulation.
Chengwei FU ; Lihua WANG ; Xia CHEN ; Yanji ZHANG ; Yingrong ZHANG ; Wei HUANG ; Hua WANG ; Zhongyu ZHOU
Chinese Acupuncture & Moxibustion 2025;45(5):614-619
OBJECTIVE:
To observe the efficacy of "Biaoben acupoint compatibility" moxibustion for abdominal obesity and its effect on blood lipid, lipid accumulation product (LAP) and cardiometabolic index (CMI).
METHODS:
A total of 150 patients with abdominal obesity were randomly divided into an observation group (75 cases, 5 cases dropped out) and a control group (75 cases, 6 cases dropped out). The control group received lifestyle guidance. The observation group received "Biaoben acupoint compatibility" moxibustion at Zhongwan (CV12), Guanyuan (CV4) and bilateral Tianshu (ST25), Zusanli (ST36) on the basis of the control group, 20 min each time, once every other day, 3 times a week for 8 weeks. Before and after treatment, the waist circumference, hip circumference, weight, body mass index (BMI) were observed, the levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured, and the LAP and CMI were calculated in the two groups.
RESULTS:
After treatment, the waist circumference, weight and BMI were decreased compared with those before treatment in both groups (P<0.05), the changes of the above indexes in the observation group were larger than those in the control group (P<0.05). After treatment, the hip circumference, TC level, TG level, LAP and CMI in the observation group were decreased compared with those before treatment (P<0.05), the HDL-C level was increased compared with that before treatment (P<0.05);the changes of the TC level, TG level, LAP, CMI and HDL-C level in the observation group were larger than those in the control group (P<0.05).
CONCLUSION
"Biaoben acupoint compatibility" moxibustion can reduce the degree of obesity in patients with abdominal obesity, and improve blood lipid and reduce lipid accumulation.
Humans
;
Acupuncture Points
;
Moxibustion
;
Male
;
Female
;
Middle Aged
;
Obesity, Abdominal/blood*
;
Adult
;
Lipids/blood*
;
Lipid Metabolism
;
Triglycerides/blood*
;
Young Adult
;
Treatment Outcome
;
Aged
2.The effects of baicalin on blood lipid metabolism and immune function in rats with gestational diabetes mellitus based on RhoA/ROCK pathway.
Yao LU ; Lin SHI ; Le WANG ; Xiaoli LUAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):992-999
Objective To investigate the effect and mechanism of baicalin on blood lipid metabolism and immune function in rats with gestational diabetes mellitus (GDM). Methods Female rats fed with high-fat and high-sugar diet and male rats fed with ordinary diet were caged together to prepare pregnant rats, and the GDM rat model was established by intraperitoneal injection of streptozotocin (35 mg/kg). GDM rats were randomly divided into a model group, a fasudil (FA) (RhoA/RocK inhibitor) group (10 mg/kg), low-dose (100 mg/kg) and high-dose (200 mg/kg) baicalin groups, and a high-dose baicalin combined with LPA (RhoA/RocK activator) group (200 mg/kg baicalin+1 mg/kg LPA ), with 12 rats in each group. Another 12 pregnant rats fed with high-fat and high-sugar diet were selected as the control group. After 2 weeks of corresponding drug intervention in each group, the level of fasting blood glucose (FBG) was detected by blood glucose meter. The level of fasting insulin (FINS) in serum was detected by ELISA, and the insulin resistance index (HOMA-IR) was calculated. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) in serum, and the levels of immunomodulator tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-10 in peripheral blood were detected by the kit. The histopathological changes of liver were observed by HE staining. The proportion of T lymphocyte subsets in peripheral blood was detected by flow cytometry. The mRNA and protein expressions of Ras homolog gene family member A (RhoA), Rho associated coiled-coil forming protein kinase 1 (ROCK1), and ROCK2 in liver tissue were detected by real-time quantitative PCR and Western blot. Results Compared with the control group, the levels of FBG, FINS, HOMA-IR, ALT, AST, TG, TC, and LDL-C in serum, the levels of TNF-α, IL-6, the percentage of CD8+T cell in peripheral blood, and the mRNA and protein expression of RhoA, ROCK1, and ROCK2 in liver tissue in the model group were higher; the level of HDL-C in serum, the percentage of IL-10 levels, CD3+T cells, CD4+T cell, and CD4+T/CD8+T ratio in peripheral blood were lower. Compared with the model group, the levels of FBG, FINS, HOMA-IR, ALT, AST, TG, TC, and LDL-C in serum, the levels of TNF-α, IL-6, the percentage of CD8+T cell in peripheral blood, and the mRNA and protein expression of RhoA, ROCK1, and ROCK2 in liver tissue in the the FA group and low-dose and high-dose baicalin groups were lower; the level of HDL-C in serum, IL-10 level, the percentage of CD3+T cells, CD4+T cell, and CD4+T/CD8+T ratio in peripheral blood were higher. LPA could obviously weaken the improvement effects of baicalin on blood lipid metabolism and immune function in GDM rats. Conclusion Baicalin may improve blood lipid metabolism and immune function in GDM rats by inhibiting the RhoA/ROCK pathway.
Animals
;
Female
;
Diabetes, Gestational/metabolism*
;
Pregnancy
;
rho-Associated Kinases/genetics*
;
Flavonoids/pharmacology*
;
Rats
;
rhoA GTP-Binding Protein/genetics*
;
Lipid Metabolism/drug effects*
;
Male
;
Signal Transduction/drug effects*
;
Rats, Sprague-Dawley
;
Blood Glucose/metabolism*
;
Lipids/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
rho GTP-Binding Proteins
3.Lipid analysis in children with bronchial asthma based on liquid chromatography-mass spectrometry: a prospective study.
Te FENG ; Li-Na XIE ; Yu-Hui ZHANG ; Yan-Jun GUO
Chinese Journal of Contemporary Pediatrics 2025;27(6):716-722
OBJECTIVES:
To explore the lipidomic characteristics of children with bronchial asthma (hereafter referred to as asthma) and identify potential biomarkers for asthma.
METHODS:
A total of 26 asthmatic children were prospectively enrolled as the asthma group, and 20 healthy children served as the healthy control group. The asthma group was further divided into atopic (n=13) and non-atopic (n=13) subgroups based on IgE levels. Serum lipid metabolites were analyzed using liquid chromatography-mass spectrometry, followed by statistical analysis and data visualization.
RESULTS:
A total of 1 435 lipids were detected in the 46 children, primarily glycerophospholipids (625/1 435, 43.55%). Significant differences were observed in serum lipid profiles between the asthma and control groups. Twelve significantly differential lipids were identified, with receiver operating characteristic curve analysis showing that phosphatidylserine (PS)(18:0/20:4) and ceramide (Cer)(c16:0) exhibited the highest diagnostic value for asthma. The relative abundances of PS(18:0/20:4) and PS(18:0/22:6) were higher in the atopic subgroup than in the non-atopic subgroup (P<0.05) and positively correlated with total IgE levels in asthmatic children (r=0.675 and 0.740, respectively; P<0.05).
CONCLUSIONS
Asthmatic children exhibit significant lipid metabolic disturbances, primarily characterized by abnormal glycerophospholipid metabolism. Among these, PS(18:0/20:4) and Cer(c16:0) demonstrate specific alterations and may serve as potential diagnostic biomarkers for asthma. Furthermore, the positive correlation between PS(18:0/20:4) and PS(18:0/22:6) levels and serum total IgE suggests their possible involvement in immune regulation in asthma.
Humans
;
Asthma/metabolism*
;
Male
;
Child
;
Female
;
Prospective Studies
;
Mass Spectrometry/methods*
;
Lipids/blood*
;
Chromatography, Liquid/methods*
;
Child, Preschool
;
Immunoglobulin E/blood*
;
Biomarkers/blood*
;
Adolescent
;
Liquid Chromatography-Mass Spectrometry
4.Mass spectrometric analysis of seminal plasma lipids in men with oligoasthenoteratozoospermia.
Juan ZHENG ; Li-Ming ZHOU ; Bang-Xu ZHENG
National Journal of Andrology 2025;31(1):3-10
OBJECTIVE:
To compare the lipid metabolites in the seminal plasma of normal fertile men from those of the patients with oligoasthenoteratozoospermia (OAT), and perform a pathway enrichment analysis on the differentially expressed lipids.
METHODS:
According to strict inclusion and exclusion criteria, we recruited 30 males seeking medical attention in our Center of Reproductive Medicine and equally divided them into an OAT and a normal fertile control group. Employing the untargeted metabolomics approach, we screened the differential lipids in the seminal plasma of the OAT patients and subjected them to pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database.
RESULTS:
In the OAT patients, the expressions of 22 lipids were significantly upregulated and those of 32 downregulated in the positive ion mode, and the expressions of 2 lipids upregulated and those of 12 downregulated in the negative ion mode. And 5 of the significantly downregulated lipids, namely anandamide(20:4,n-6), adrenic acid, cis-gondoic acid, (3'-sulfo)galbeta-cer(d18:1/24:1(15Z)) and palmitoylcarnitine, were associated with 4 branches and 8 sub-branches of the KEGG metabolic pathways, among which the differential lipid anandamide (20:4,n-6) was involved in the regeneration of the biological system in the KEGG sub-pathway and considered to be a significantly differentially enriched pathway.
CONCLUSION
Lipid metabolites in the seminal plasma of OAT patients are significantly different from those in normal fertile males, and the differential lipid anandamide (20:4,n-6) may be involved in the regulation of sperm function and play an important role in male fertility.
Humans
;
Male
;
Semen/metabolism*
;
Adult
;
Lipids/analysis*
;
Case-Control Studies
;
Asthenozoospermia/metabolism*
;
Oligospermia/metabolism*
;
Lipid Metabolism
;
Mass Spectrometry
5.Electroacupuncture at Zusanli improves blood lipid disorders in hyperlipidemic mice by improving gut microbiota structure.
Chuyu DENG ; Xueying WANG ; Lixiang GAN ; Dayu WANG ; Xiaoyan ZHENG ; Chunzhi TANG
Journal of Southern Medical University 2025;45(8):1633-1642
OBJECTIVES:
To investigate the therapeutic effect of electroacupuncture (EA) at Zusanli (ST36) acupoint on hyperlipidemia in mice and explore the underlying mechanisms.
METHODS:
Thirty C57BL/6J mice were equally randomized into normal diet group, high-fat diet (HFD) group, and EA group. The changes in blood lipids and serum malondialdehyde (MDA) content of the mice were evaluated, and histopathological changes and lipid accumulation in the liver were observed using Oil red O staining (ORO). The expressions of NLRP3, TLR4, and IL-1β proteins in the colon tissues were detected with Western blotting, and gut microbiota changes were analyzed using 16S rDNA sequencing.
RESULTS:
In mice with HFD feeding, 16 weeks of EA treatment significantly lowered body weight and serum TC, TG, LDL-C and MDA levels, obviously reduced lipid accumulation in the liver, and ameliorated HFD-induced elevations of protein expressions of NLRP3, TLR4, and IL-1β. 16S rRNA sequencing revealed that EA significantly altered gut microbiota composition, and increased the diversity and relative abundance of beneficial bacterial groups such as Muribaculaceae and Lachnospiraceae NK4A136_group.
CONCLUSIONS
Electroacupuncture at ST36 alleviates blood lipid disorders in hyperlipidemic mice possibly by improving intestinal microbiota structure, promoting degradation of high-caloric carbohydrates, cholesterol lipid metabolism and intestinal mucosa repair, and reducing toxin leakage, lipid peroxides, and liver fat deposition.
Animals
;
Electroacupuncture
;
Gastrointestinal Microbiome
;
Hyperlipidemias/blood*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat
;
Toll-Like Receptor 4/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Acupuncture Points
;
Male
;
Lipids/blood*
;
Interleukin-1beta/metabolism*
;
Liver/metabolism*
6.Identification of the PfDof transcription factor family in Perilla frutescens and functional analysis of PfDof29 in lipid synthesis.
Shuwei CHEN ; Ting HU ; Ting LEI ; Hongli YANG ; Jing WEN ; Xudong CHAI ; Jiping WANG ; Runzhi LI
Chinese Journal of Biotechnology 2025;41(7):2934-2953
Perilla frutescens (L.) Britt. is a characteristic oil crop rich in polyunsaturated fatty acids, particularly α-linolenic acid, which has important development and utilization value. The Dof transcription factor is one of the plant-specific transcription factor families, which is widely involved in important biological processes such as plant growth, development, and metabolic regulation. In order to explore the key Dof transcription factors involved in the oil biosynthesis and systematically analyze their regulatory mechanisms of P. frutescens seeds, a total of 56 PfDof gene family members were identified from the genome and transcriptome data of P. frutescens and classified into four subfamilies according to sequence characteristics. All PfDofs contained highly conserved C2-C2 zinc finger domains, with gene duplication being the primary mechanism driving their evolution and expansion. Genes within the same subgroup exhibited similar gene structures and conserved motifs. The 56 PfDofs were predicted as unstable hydrophilic proteins, with α-helixes and random coils as their predominant structural components. The RNA-seq results revealed that 11 PfDofs exhibited differential expression during different developmental stages of P. frutescens seeds. RT-qPCR was performed to further validate the expression patterns of these 11 members across various tissue samples (root, stem, leaf, and flower) of P. frutescens and at different developmental stages of its seeds. The results showed that PfDof29 exhibited the highest expression level in seeds, which was consistent with the transcriptome data. Subcellular localization studies demonstrated that PfDof29 was localized to the nucleus and had a transcriptional activation activity. Overexpression of PfDof29 in Nicotiana tabacum resulted in a significant increase in total oil content of tobacco leaves, accompanied by reductions in starch and soluble sugar content, while the protein content remained unchanged. Additionally, the metabolic balance between saturated and unsaturated fatty acids in the transgenic tobacco leaves was altered, with a significant increase in α-linolenic acid content. The expression levels of the fatty acid desaturase genes NtFAD2, NtFAD3, and NtFAD8 were significantly upregulated. A yeast one-hybrid assay revealed that PfDof29 could directly bind to the promoter region of PfFAD8, thereby regulating its expression. This study provides an initial understanding of the regulatory mechanisms of PfDof transcription factors in the synthesis and accumulation of oil in P. frutescens. These findings offer new insights into the enhancement of oil content and quality of P. frutescens seeds.
Transcription Factors/physiology*
;
Perilla frutescens/metabolism*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
alpha-Linolenic Acid/biosynthesis*
;
Lipids/biosynthesis*
;
Seeds/genetics*
7.Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice.
Lei PENG ; Hua-Guo CHEN ; Xin ZHOU
Journal of Integrative Medicine 2023;21(3):289-301
OBJECTIVE:
Recent investigations have demonstrated that Polygonum perfoliatum L. can protect against chemical liver injury, but the mechanism behind its efficacy is still unclear. Therefore, we studied the pharmacological mechanism at work in P. perfoliatum protection against chemical liver injury.
METHODS:
To evaluate the activity of P. perfoliatum against chemical liver injury, levels of alanine transaminase, lactic dehydrogenase, aspartate transaminase, superoxide dismutase, glutathione peroxidase and malondialdehyde were measured, alongside histological assessments of the liver, heart and kidney tissue. A nontargeted lipidomics strategy based on ultra-performance liquid chromatography quadrupole-orbitrap high-resolution mass spectrometry method was used to obtain the lipid profiles of mice with chemical liver injury and following treatment with P. perfoliatum; these profiles were used to understand the possible mechanisms behind P. perfoliatum's protective activity.
RESULTS:
Lipidomic studies indicated that P. perfoliatum protected against chemical liver injury, and the results were consistent between histological and physiological analyses. By comparing the profiles of liver lipids in model and control mice, we found that the levels of 89 lipids were significantly changed. In animals receiving P. perfoliatum treatment, the levels of 8 lipids were significantly improved, relative to the model animals. The results showed that P. perfoliatum extract could effectively reverse the chemical liver injury and significantly improve the abnormal liver lipid metabolism of mice with chemical liver injury, especially glycerophospholipid metabolism.
CONCLUSION
Regulation of enzyme activity related to the glycerophospholipid metabolism pathway may be involved in the mechanism of P. perfoliatum's protection against liver injury. Please cite this article as: Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. J Integr Med. 2023; 21(3): 289-301.
Animals
;
Mice
;
Polygonum/chemistry*
;
Lipidomics
;
Liver
;
Lipids/pharmacology*
;
Glycerophospholipids/pharmacology*
;
Chemical and Drug Induced Liver Injury/metabolism*
8.Therapeutic potential of alkaloid extract from Codonopsis Radix in alleviating hepatic lipid accumulation: insights into mitochondrial energy metabolism and endoplasmic reticulum stress regulation in NAFLD mice.
Cailian FAN ; Guan WANG ; Miao CHEN ; Yao LI ; Xiyang TANG ; Yi DAI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):411-422
Alkaloids are a class of naturally occurring bioactive compounds that are widely distributed in various food sources and Traditional Chinese Medicine. This study aimed to investigate the therapeutic effects and underlying mechanisms of alkaloid extract from Codonopsis Radix (ACR) in ameliorating hepatic lipid accumulation in a mouse model of non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD). The results revealed that ACR treatment effectively mitigated the abnormal weight gain and hepatic injury associated with HFD. Furthermore, ACR ameliorated the dysregulated lipid metabolism in NAFLD mice, as evidenced by reductions in serum triglyceride, total cholesterol, and low-density lipoprotein levels, accompanied by a concomitant increase in the high-density lipoprotein level. ACR treatment also demonstrated a profound anti-oxidative effect, effectively alleviating HFD-induced oxidative stress and promoting ATP production. These effects were achieved through the up-regulation of the activities of mitochondrial electron transfer chain complexes I, II, IV, and V, in addition to the activation of the AMPK/PGC-1α pathway, suggesting that ACR exhibits therapeutic potential in alleviating the HFD-induced dysregulation of mitochondrial energy metabolism. Moreover, ACR administration mitigated HFD-induced endoplasmic reticulum (ER) stress and suppressed the overexpression of ubiquitin-specific protease 14 (USP14) in NAFLD mice. In summary, the present study provides compelling evidence supporting the hepatoprotective role of ACR in alleviating lipid deposition in NAFLD by improving energy metabolism and reducing oxidative stress and ER stress. These findings warrant further investigation and merit the development of ACR as a potential therapeutic agent for NAFLD.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Codonopsis
;
Liver
;
Lipid Metabolism
;
Antineoplastic Agents/pharmacology*
;
Alkaloids/pharmacology*
;
Endoplasmic Reticulum Stress
;
Energy Metabolism
;
Lipids
;
Diet, High-Fat/adverse effects*
;
Mice, Inbred C57BL
9.IGFBP-3 promotes cachexia-associated lipid loss by suppressing insulin-like growth factor/insulin signaling.
Xiaohui WANG ; Jia LI ; Wei ZHANG ; Feng WANG ; Yunzi WU ; Yulin GUO ; Dong WANG ; Xinfeng YU ; Ang LI ; Fei LI ; Yibin XIE
Chinese Medical Journal 2023;136(8):974-985
BACKGROUND:
Progressive lipid loss of adipose tissue is a major feature of cancer-associated cachexia. In addition to systemic immune/inflammatory effects in response to tumor progression, tumor-secreted cachectic ligands also play essential roles in tumor-induced lipid loss. However, the mechanisms of tumor-adipose tissue interaction in lipid homeostasis are not fully understood.
METHODS:
The yki -gut tumors were induced in fruit flies. Lipid metabolic assays were performed to investigate the lipolysis level of different types of insulin-like growth factor binding protein-3 (IGFBP-3) treated cells. Immunoblotting was used to display phenotypes of tumor cells and adipocytes. Quantitative polymerase chain reaction (qPCR) analysis was carried out to examine the gene expression levels such as Acc1 , Acly , and Fasn et al .
RESULTS:
In this study, it was revealed that tumor-derived IGFBP-3 was an important ligand directly causing lipid loss in matured adipocytes. IGFBP-3, which is highly expressed in cachectic tumor cells, antagonized insulin/IGF-like signaling (IIS) and impaired the balance between lipolysis and lipogenesis in 3T3-L1 adipocytes. Conditioned medium from cachectic tumor cells, such as Capan-1 and C26 cells, contained excessive IGFBP-3 that potently induced lipolysis in adipocytes. Notably, neutralization of IGFBP-3 by neutralizing antibody in the conditioned medium of cachectic tumor cells significantly alleviated the lipolytic effect and restored lipid storage in adipocytes. Furthermore, cachectic tumor cells were resistant to IGFBP-3 inhibition of IIS, ensuring their escape from IGFBP-3-associated growth suppression. Finally, cachectic tumor-derived ImpL2, the IGFBP-3 homolog, also impaired lipid homeostasis of host cells in an established cancer-cachexia model in Drosophila . Most importantly, IGFBP-3 was highly expressed in cancer tissues in pancreatic and colorectal cancer patients, especially higher in the sera of cachectic cancer patients than non-cachexia cancer patients.
CONCLUSION
Our study demonstrates that tumor-derived IGFBP-3 plays a critical role in cachexia-associated lipid loss and could be a biomarker for diagnosis of cachexia in cancer patients.
Humans
;
Insulin-Like Growth Factor Binding Protein 3/metabolism*
;
Culture Media, Conditioned/pharmacology*
;
Cachexia/pathology*
;
Gastrointestinal Neoplasms
;
Somatomedins/metabolism*
;
Insulins/metabolism*
;
Lipids
10.Advances in gene editing and natural product synthesis of Rhodotorula toruloides.
Qidou GAO ; Yaqi DONG ; Ying HUANG ; Yijuan LIU ; Xiaobing YANG
Chinese Journal of Biotechnology 2023;39(6):2313-2333
Rhodotorula toruloides is a non-conventional red yeast that can synthesize various carotenoids and lipids. It can utilize a variety of cost-effective raw materials, tolerate and assimilate toxic inhibitors in lignocellulosic hydrolysate. At present, it is widely investigated for the production of microbial lipids, terpenes, high-value enzymes, sugar alcohols and polyketides. Given its broad industrial application prospects, researchers have carried out multi-dimensional theoretical and technological exploration, including research on genomics, transcriptomics, proteomics and genetic operation platform. Here we review the recent progress in metabolic engineering and natural product synthesis of R. toruloides, and prospect the challenges and possible solutions in the construction of R. toruloides cell factory.
Gene Editing
;
Metabolic Engineering
;
Rhodotorula/metabolism*
;
Lipids

Result Analysis
Print
Save
E-mail