1.Exercise regulates lipid metabolism via lipophagy and its molecular mechanisms.
Meng-Ying LI ; Ling-Jie LI ; Chun-Wei MA ; Bing-Hong GAO
Acta Physiologica Sinica 2022;74(2):309-319
Lipophagy is a kind of selective autophagy, which can selectively identify and degrade lipid droplets and plays an important role in regulating cellular lipid metabolism and maintaining intracellular lipid homeostasis. Exercise can induce lipophagy and it is also an effective means of reducing body fat. In this review, we summarized the relationship between exercise and lipophagy in the liver, pancreas, adipose tissue, and the possible molecular mechanisms to provide a new clue for the prevention and treatment of fatty liver, obesity and other related metabolic diseases by exercise.
Autophagy/physiology*
;
Humans
;
Lipid Droplets/metabolism*
;
Lipid Metabolism/physiology*
;
Liver
;
Metabolic Diseases/metabolism*
2.Effects of light intensity on physiological and biochemical characteristics of Chrysanthemum morifolium at vegetative stage.
Qiaosheng GUO ; Yanru WANG ; Xianxiu ZHANG ; Miao JIN
China Journal of Chinese Materia Medica 2010;35(5):561-564
OBJECTIVETo study the effect of light intensity on physiological and biochemical characteristics of Chrysanthemum morifolium at the vegetative stage.
METHODThe dynamic response of physiological and biochemical indexes of Ch. morifolium were measured under different treatments (100%, 80%, 60%, 40% and 20% of the full sunlight) at the vegetative stage.
RESULTThe physiological and biochemical indexes of Ch. morifolium showed dynamic changes with the progress of growth and the increase of the treatment time. The soluble sugar content decreased when the light intensity reduced, and had a significant positive correlation with the light intensity. Soluble protein content rose firstly and fell later, malondialdehyde content increased, superoxide dismutase and catalase activity decreased initially and increased afterwards.
CONCLUSIONProper shading benefits the nitrogen accumulation of Ch. morifolium at the vegetative stage, and reduces the strength of stress condition. The suitable light environment for growth of Ch. morifolium at the vegetative stage is about 80%-60% of full sunlight and the optimum treatment time is 20-40 days.
Catalase ; metabolism ; Chrysanthemum ; physiology ; Light ; Lipid Peroxidation ; Superoxide Dismutase ; metabolism
3.MicroRNA and metabolism regulation.
Ming LI ; Huiqing XIE ; Wu XIONG ; Dan XU ; Ke CAO ; Rui LIU ; Jianda ZHOU ; Chengqun LUO
Journal of Central South University(Medical Sciences) 2013;38(3):318-322
MicroRNAs have been identified as a new class of regulatory molecules that affect many biological functions by interferring the target gene expressions. Latest studies demonstrate that microRNAs can influence many pivotal bio-processes and deeply involve in the metabolism of glucose, lipid and amino acid and biological oxidation. For glucose metabolism, microRNAs are related to insulin secretion, insulin sensitivity, glucose uptake, glycolysis, oxidation and mitochondrial function. For lipid matebolism, microRNAs can regulate the target genes related to lipid biosynthesis, catabolism and transportation. MicroRNAs can influence glutamine catabolism.
Animals
;
Glucose
;
metabolism
;
Glutamine
;
metabolism
;
Humans
;
Insulin
;
metabolism
;
Insulin Secretion
;
Lipid Metabolism
;
physiology
;
Metabolism
;
physiology
;
MicroRNAs
;
physiology
4.C30F12.4 influences oogenesis, fat metabolism, and lifespan in C. elegans.
Lu WANG ; Fei XU ; Guishuan WANG ; Xiaorong WANG ; Ajuan LIANG ; Hefeng HUANG ; Fei SUN
Protein & Cell 2016;7(10):714-721
Reproduction, fat metabolism, and longevity are intertwined regulatory axes; recent studies in C. elegans have provided evidence that these processes are directly coupled. However, the mechanisms by which they are coupled and the reproductive signals modulating fat metabolism and lifespan are poorly understood. Here, we find that an oogenesis-enriched gene, c30f12.4, is specifically expressed and located in germ cells and early embryos; when the gene is knocked out, oogenesis is disrupted and brood size is decreased. In addition to the reproductive phenotype, we find that the loss of c30f12.4 alters fat metabolism, resulting in decreased fat storage and smaller lipid droplets. Meanwhile, c30f12.4 mutant worms display a shortened lifespan. Our results highlight an important role for c30f12.4 in regulating reproduction, fat homeostasis, and aging in C. elegans, which helps us to better understand the relationship between these processes.
Animals
;
Caenorhabditis elegans
;
genetics
;
metabolism
;
Caenorhabditis elegans Proteins
;
genetics
;
metabolism
;
Female
;
Lipid Droplets
;
metabolism
;
Lipid Metabolism
;
physiology
;
Longevity
;
physiology
;
Mutation
;
Oogenesis
;
physiology
5.Research progress on the regulation of mammalian energy metabolism by the circadian clock system and gut microbiota.
Hai-Sen ZHANG ; Chao LI ; Ya-Ting LI ; Ya-Ping JIN ; Wei LIU ; Hua-Tao CHEN
Acta Physiologica Sinica 2022;74(3):443-460
The mammalian internal circadian clock system has been evolved to adapt to the diurnal changes in the internal and external environment of the organism to regulate diverse physiological functions, such as the sleep-wake cycle and feeding rhythm, thereby coordinating the rhythmic changes of energy demand and nutrition supply in each diurnal cycle. The circadian clock regulates glucose metabolism, lipid metabolism, and hormones secretion in diverse tissues and organs, including the liver, skeletal muscle, pancreas, heart, and vessels. As a special "organ" of the host, the gut microbiota, together with the intestinal microenvironment (tissues, cells, and metabolites) in a co-evolutionary process, constitutes a micro-ecosystem and plays an important role in the process of nutrient digestion and absorption in the intestine of the host. In recent years, accumulating evidence indicates that the compositions, quantities, colonization, and functional activities of the gut microbiota exhibit significant circadian variations, which are closely related to the changes of various physiological functions under the regulation of host circadian clock system. In addition, several studies have shown that the gut microbiota can produce many important metabolites such as the short-chain fatty acids through the degradation of indigestive dietary fibers. A portion of gut microbiota-derived metabolites can regulate the circadian clock system and metabolism of the host. This article mainly discusses the interaction between the host circadian clock system and the gut microbiota, and highlights its influence on energy metabolism of the host, providing a novel clues and thought for the prevention and treatment of metabolic diseases.
Animals
;
Circadian Clocks/physiology*
;
Circadian Rhythm/physiology*
;
Ecosystem
;
Energy Metabolism
;
Gastrointestinal Microbiome/physiology*
;
Lipid Metabolism/physiology*
;
Mammals
6.Roles of the lipid metabolism in hepatic stellate cells activation △.
Xin-yan JING ; Xue-feng YANG ; Kai QING ; Yan OU-YANG
Chinese Medical Sciences Journal 2013;28(4):233-236
The lipids present in hepatic stellate cells (HSCs) lipid droplets include retinyl ester, triglyceride, cholesteryl ester, cholesterol, phospholipids and free fatty acids. Activation of HSCs is crucial to the development of fibrosis in liver disease. During activation, HSCs transform into myofibroblasts with concomitant loss of their lipid droplets and production of excessive extracellular matrix. Release of lipid droplets containing retinyl esters and triglyceride is a defining feature of activated HSCs. Accumulating evidence supports the proposal that recovering the accumulation of lipids would inhibit the activation of HSCs. In healthy liver, quiescent HSCs store 80% of total liver retinols and release them depending on the extracellular retinol status. However, in injured liver activated HSCs lose their retinols and produce a considerable amount of extracellular matrix, subsequently leading to liver fibrosis. Further findings prove that lipid metabolism of HSCs is closely associated with its activation, yet relationship between activated HSCs and the lipid metabolism has remained mysterious.
Animals
;
Cholesterol
;
metabolism
;
Hepatic Stellate Cells
;
physiology
;
Humans
;
Lipid Metabolism
;
Triglycerides
;
metabolism
;
Vitamin A
;
metabolism
7.Lipid metabolic intermediates regulate skeletal muscle insulin sensitivity.
Acta Physiologica Sinica 2022;74(5):805-815
Skeletal muscle is the largest organ of human body, which completes 80%-90% of glucose intake stimulated by insulin, and is closely related to the occurrence and development of insulin resistance (IR). Skeletal muscle is one of the main places of lipid metabolism, and lipid metabolites participate in skeletal muscle metabolism as signal molecules. Fatty acids regulate skeletal muscle insulin sensitivity through insulin signaling pathway, inflammatory response and mitochondrial function. Saturated fatty acids (SFAs) induce insulin resistance by impairing insulin signal transduction, inducing mitochondrial dysfunction and inflammatory response, while unsaturated fatty acids reverse the adverse effects of SFAs and ameliorate IR by enhancing insulin signal transduction and anti-inflammatory effect. In addition, disorders of lipid metabolism in skeletal muscle cause accumulation of harmful metabolic intermediates, such as diacylglycerol, ceramide and long-chain acyl-coenzyme A, and induce IR by directly or indirectly damaging insulin signaling pathway. This article reviews the research progress of lipid metabolic intermediates regulating insulin sensitivity in skeletal muscle, which will help to better understand the pathogenesis of diabetes.
Humans
;
Insulin Resistance/physiology*
;
Muscle, Skeletal/metabolism*
;
Insulin/metabolism*
;
Lipid Metabolism
;
Fatty Acids/metabolism*
8.Roles of lipid droplets in hepatitis C virus life cycle.
Xiao-Jie YANG ; Lei-Liang ZHANG
Chinese Journal of Virology 2014;30(1):91-97
Lipid droplets are the main storage organelles for intracellular neutral lipids. Many recent studies have found that lipid droplets are closely related to hepatitis C virus (HCV). Lipid droplets play important roles in the multiple processes of HCV life cycle, such as infection, replication, assembly, and secretion. In this review, we summarize the recent research progress in the roles of lipid droplets in HCV life cycle.
Animals
;
Hepacivirus
;
metabolism
;
physiology
;
Host-Pathogen Interactions
;
Humans
;
Lipid Metabolism
;
Organelles
;
virology
;
Viral Proteins
;
metabolism
9.Effect of high fat diet on proteome in mice stomachs.
Xianju LI ; Zhike LI ; Wenjuan ZHAO ; Jun QIN
Chinese Journal of Biotechnology 2018;34(11):1840-1849
To explore the effect of high fat diet on proteome in mice stomachs, we constructed a model in which the mice were fed with high fat diet as the high fat diet (HFD) group or normal diet as the control (CTRL) group for 110 days. The stomachs were collected and divided into three regions (forestomach (F), corpus (C) and antrum (A)) for protein extraction and mass spectrometry analysis. Of all 9 307 identified proteins in two groups, 4 066 proteins (HFD: 3 832, CTRL: 3 654) were strictly identified by at least one unique peptide and identified twice in three replicates. Using gene ontology (GO) and interaction network analysis we analyzed differentially expressed proteins (fold change≥2) in two groups or between regions. In the whole stomach tissues, proteins up-regulated in HFD group mainly were associated with protein stabilization and protein transport. Differentially expressed proteins between regions showed that forestomach was related to the biological process of keratinization and actin assembly, while corpus and antrum mainly performed digestive function. Compared with forestomach, the corpus and antrum were more affected by the diet. Though there was no significant effect on the basic digestive function of the stomach, proteins that were involved in protein transport and lipid metabolism-related biological processes were significantly highly expressed in HFD group.
Animals
;
Diet, High-Fat
;
Lipid Metabolism
;
Mice
;
Mice, Inbred C57BL
;
Protein Transport
;
Proteome
;
physiology
;
Stomach
;
physiology
10.The metabolic changes of mice serum after loaded swimming.
Jian-Quan WU ; Chang-Jiang GUO ; Wei-Na GAO ; Jin LIU ; Jing-Yu WELI ; Ji-Jun YANG
Chinese Journal of Applied Physiology 2011;27(1):42-45
OBJECTIVETo investigate the metabolic changes of mice serum after loaded swimming and to provide a basis for the study of anti-fatigue functional food.
METHODSThe male Kunming mice were randomly divided into four group, fed an AIN-93 diet for 14 days, and forced to swim for 30, 60 or 120 min, respectively, with a load on their tails. The mice were executed after swimming immediately and the changes of serum metabolic profiles were analyzed using metabolomic approach. The spectrum was acquired by using Carr Purcell Meiboom Gill (CPMG) or Longitudinal Eddy Current Delay (LED) sequence, and transformed into 1H NMR spectrogram via Fourier transformation. All the data were analyzed by principal component analysis by using the SIMCA-P+ software.
RESULTSThe serum metabolic profiles changed significantly after loaded swimming. Serum beta-hydroxybutyric acid, acetate, lactate, lipid were increased and glucose, choline, phosphorylcholine, alanine and phosphatidylcholine decreased. These changes were time dependent.
CONCLUSIONThe changes of serum metabolic profiles after loaded swimming were time dependent, especially for lipid metabolite.Further study based on the interaction of choline and lipid metabolism may contribute to understand the mechanism of fatigue.
Animals ; Choline ; metabolism ; Fatigue ; blood ; metabolism ; physiopathology ; Lipid Metabolism ; Male ; Metabolome ; Mice ; Physical Exertion ; physiology ; Swimming ; physiology