1.Improving the position specificity of Themomyces lanuginosus lipase based on semi-rational design.
Yadi MA ; Cuiping YOU ; Guoqiang ZHANG ; Jianghua LI ; Guocheng DU
Chinese Journal of Biotechnology 2023;39(8):3481-3493
Diacylglycerol (DAG) is an intermediate product in lipid metabolism and plays an important physiological role in human body. It is mainly prepared by hydrolyzing lipid with lipase. However, research on the detection method of 1, 2-diacylglycerol (1, 2-DAG) and 1, 3-diacylglycerol (1, 3-DAG) and catalytic specificity of lipase was not enough, which limits its wide application. To address these challenges, an efficient quantitative detection method was first established for 1, 2-DAG (0.025-0.200 g/L) and 1, 3-DAG (0.025-0.150 g/L) by combining supercritical fluid chromatography with evaporative light scattering detector and optimizing the detection and analysis parameters. Based on the molecular docking between Thermomyces lanuginosus lipase (TLL) and triolein, five potential substrate binding sites were selected for site-specific saturation mutation to construct a mutation library for enzyme activity and position specificity screening. The specificity of sn-1, 3 of the I202V mutant was the highest in the library, which was 11.7% higher than the specificity of the wild type TLL. In summary, the position specificity of TLL was modified based on a semi-rational design, and an efficient separation and detection method of DAG isomers was also established, which provided a reference for the study of the catalytic specificity of lipase.
Humans
;
Diglycerides
;
Molecular Docking Simulation
;
Binding Sites
;
Catalysis
;
Lipase/genetics*
2.Novel Pathogenic Mutation of PNPLA1 Identified in Autosomal Recessive Congenital Ichthyosis: A Case Report.
Li HAN ; Qian LIJUAN ; Xu NAN ; Huang LI ; Qiao LI-XING
Chinese Medical Sciences Journal 2022;37(4):349-352
Autosomal recessive congenital ichthyosis (ARCI) is characterized by being born as collodion babies, hyperkeratosis, and skin scaling. We described a collodion baby at birth with mild ectropion, eclabium, and syndactyly. Whole exome sequencing showed a compound heterozygous variant c.[56C>A], p.(Ser19X) and c.[100G>A], p.(Ala34Thr) in the PNPLA1 gene [NM_001145717; exon 1]. The protein encoded by PNPLA1 acts as a unique transacylase that specifically transfers linoleic acid from triglyceride to ω-hydroxy fatty acid in ceramide, thus giving rise to ω-O-acylceramide, a particular class of sphingolipids that is essential for skin barrier function. The variant was located in the patatin core domain of PNPLA1 and resulted in a truncated protein which could disrupt the function of the protein. This case report highlights a novel compound heterozygous mutation in PNPLA1 identified in a Chinese child.
Humans
;
Infant, Newborn
;
Acyltransferases/genetics*
;
Ceramides/metabolism*
;
Collodion
;
Ichthyosis, Lamellar/genetics*
;
Lipase/metabolism*
;
Mutation
;
Phospholipases/genetics*
4.Polymorphism analysis of virulence-related genes among Candida tropicalis isolates.
Li-Juan ZHANG ; Shuan-Bao YU ; Wen-Ge LI ; Wen-Zhu ZHANG ; Yuan WU ; Jin-Xing LU
Chinese Medical Journal 2019;132(4):446-453
BACKGROUND:
Adhesion, biofilm formation, yeast-hyphal transition, secretion of enzymes, and hemolytic activity are all considered important factors in Candida tropicalis infection. However, DNA sequence data for this pathogen are limited. In this study, the polymorphism and heterogeneity of genes agglutinin-like sequences (ALS)2, Lipase (LIP)1, LIP4, and secretory aspartyl proteinase tropicalis (SAPT)1-4 as well as the relationship between phenotype and genotype were analyzed.
METHODS:
This study started in August 2013, and ended in July 2017. The complete length of ALS2, LIP1, LIP4, and SAPT1-4 of 68 clinical C. tropicalis isolates was sequenced. Single nucleotide polymorphisms (SNPs) as well as insertions and deletions (indels) were identified within these genes. In addition, phenotypic characteristics of the virulent factors, including adhesion and the secretion of aspartyl proteinases and phospholipases, were determined.
RESULTS:
There were 73, 24, 17, 16, 13, and 180 SNPs in the genes LIP1, LIP4, SAPT1, SAPT2, SAPT3, and SAPT4, respectively. Furthermore, 209 SNPs were identified in total for the gene ALS2. Interestingly, large fragment deletions and insertions were also found in ALS2. Isolate FXCT 01 obtained from blood had deletions on all 4 sites and showed the lowest adhesion ability on the polymethylpentene surface. In addition, isolates with deletions in the regions 1697 to 1925 and 2073 to 2272 bp displayed relatively low abilities for adhesion and biofilm formation, and this phenotype correlated with the deletions found in ALS2. LIP1, SAPT4, and ALS2 displayed great heterogeneity among the isolates. Large deletions found in gene ALS2 appeared to be associated with the low ability of adhesion and biofilm formation of C. tropicalis.
CONCLUSION
This study might be useful for deeper explorations of gene function and studying the virulent mechanisms of C. tropicalis.
Bacterial Adhesion
;
Biofilms
;
Candida tropicalis
;
genetics
;
pathogenicity
;
Lipase
;
genetics
;
Polymorphism, Single Nucleotide
;
Virulence
;
genetics
6.Yeast cell surface display and its application of enzymatic synthesis in non-aqueous phase.
Shuangyan HAN ; Huazhen LI ; Zi JIN ; Dengfeng HUANG ; Changqiong REN ; Ying LIN
Chinese Journal of Biotechnology 2009;25(12):1784-1788
Yeast surface display involves that the exogenous protein, which was fused with the yeast outer shell cell wall protein, was genetically anchored on the yeast cell surface. It has been widely used in expression and screening of functional protein. Here, we focused on the construction of lipase-displaying systems and its application in enzymatic biosynthesis, such as fatty acid methyl esters, short-chain flavour esters and sugar esters applications, and so on.
Candida
;
enzymology
;
genetics
;
Lipase
;
biosynthesis
;
genetics
;
Pichia
;
enzymology
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Solvents
;
Yeasts
;
enzymology
;
genetics
7.Identification and 3D architecture analysis of the LIPC gene mutation in a pedigree with familial hypercholesterolemia-like phenotype.
Hang ZHANG ; Fang Yuan LI ; Yu HAO ; Xu Min WANG ; Ju ZHANG ; Ya Luan MA ; Hui ZENG ; Jie LIN
Chinese Journal of Cardiology 2023;51(7):716-721
Objective: To identify and analyze 3D architecture of the mutational sites of susceptible genes in a pedigree with familial hypercholesterolemia-like phenotype (FHLP). Methods: This is a case series study. A pedigree with suspected familial hypercholesterolemia was surveyed. The proband admitted in Beijing Anzhen Hospital in April 2019. Whole-exome sequencing was performed to determine the mutational sites of susceptible genes in the proband. Polymerase chain reaction (PCR) sequencing was used to verify the pathogenic variant on proband's relatives. The structural and functional changes of the proteins were analyzed and predicted by Discovery Studio 4.0 and PyMol 2.0. Results: The patients in the pedigree showed abnormal lipid profiles, especially elevated levels of total cholesterol(TC). The genetic screening detected the c.1330C>T SNP in the exon 8 of lipase C (LIPC) gene, this mutation leads to an amino acid substitution from arginine to cysteine at position 444 (Arg444Cys), in the proband and proband's father and brother. In this family, members with this mutation exhibited elevated TC, whereas lipid profile was normal from the proband's mother without this mutation. This finding indicated that LIPC: c.1330C>T mutation might be the mutational sites of susceptible genes. The analysis showed that Arg444Cys predominantly affected the ligand-binding property of the protein, but had a limited impact on catalytic function. Conclusion: LIPC: c.1330C>T is a new mutational site of susceptible genes in this FHLP pedigree.
Humans
;
Male
;
Hyperlipoproteinemia Type II/genetics*
;
Lipase/genetics*
;
Lipids
;
Mutation
;
Pedigree
;
Phenotype
;
Proteins
8.Increasing activity of Rhizopus chinensis CCTCC M201021 lipase by directed evolution-error prone PCR.
Rui WANG ; Xiaowei YU ; Chong SHA ; Yan XU
Chinese Journal of Biotechnology 2009;25(12):1892-1899
Directed evolution strategy (error-prone PCR) was conducted to improve the activity of lipase from Rhizopus chinensis CCTCC M201021. Through two rounds of ep-PCR and pNPP top agar screening, two optimum mutant strains 1-11 and 2-28 were obtained with 2 and 4 fold of enzyme activity higher than that of parent strain, respectively. DNA sequencing of mutant lipase 2-28 revealed four amino acid substitutions: A129S, K161R, A230T, K322R. According to the simulated protein structure of Rhizopus chinensis lipase, A129S, K161R, A230T were located on the surface of the protein. A230T substitution improved the stability of the alpha-helix loop. K322R, near the catalytic center of lipase, located at a loop, formed a salt-bridge with a nearby aspartic acid (negative charged). Electrostatic force pulled the loop to the opposite direction of the substrate channel and made it easier for substrate to enter the lipase catalytic domain. Purified lipase was characterized and the result showed that Km of 2-28 lipase decreased by 10% compared with Km of the parent lipase, and Kcat was 2.75 fold improved than that of the original lipase.
Directed Molecular Evolution
;
Lipase
;
chemistry
;
genetics
;
Point Mutation
;
Protein Engineering
;
Rhizopus
;
enzymology
;
genetics
9.Study on the characteristics of tissue expression of hormone sensitive lipase and triacylglycerol hydrolase in pigs.
Qi WANG ; Li-Hong ZHANG ; Li-Jie ZHANG ; Gong-She YANG
Chinese Journal of Biotechnology 2007;23(5):831-835
The specific expression of TGH and HSL genes in different tissues of Bamei pig was investigated by RT-PCR and Western blot in this study. The result of RT-PCR showed that the expression of HSL could be detected in all these seven tissues examined, and which was higher expressed in fat, lower in heart, liver, lung, spleen and kidney. Expression of TGH gene could also be detected in seven tissues, and higher in liver and fat, lower in heart and kidney and lowest in spleen and lung. The result of Western blot showed that, HSL gene was highest expressed in epiploica fat and subcutaneous fat, higher in other tissues, but couldn' t be detected in kidney. Expression of TGH was detected in epiploica fat, subcutaneous fat, liver, lung and spleen, and highest in fat and liver, but it hadn't be found in heart and kidney. These results suggested that both HSL and TGH could be regulated by post-transcriptional, and their function was involved in different tissues.
Animals
;
Gene Expression Regulation
;
Lipase
;
genetics
;
metabolism
;
Male
;
Sterol Esterase
;
genetics
;
metabolism
;
Swine
;
Tissue Distribution
10.Lipoprotein lipase gene mutations and the risk of cardiovascular diseases in children with obesity.
Yu-ming GUAN ; Yong-hao GUI ; Fei-hong LUO ; Shui-xian SHEN ; Yi YANG
Chinese Journal of Contemporary Pediatrics 2010;12(3):161-164
OBJECTIVETo inquire into the relationship between lipoprotein lipase (LPL) gene D9N, N291S and S447X polymorphisms and the development of cardiovascular diseases in children with obesity.
METHODSThe polymerase chain reaction (PCR) and restriction fragment length polymorphism (RLFP) techniques were used to detect three common mutations of LPL gene exon D9N, N291S and S447X in 157 obese children and 175 normal controls. Plasma lipid and lipoprotein levels between children with different genotypes were compared.
RESULTSThe D9N and N291S gene mutations were not detected in either the obese or the control groups. There were no significant differences in the frequency of S447X gene mutation between the two groups. There were no significant differences in the levels of plasma lipid and lipoprotein between children with S447 and X447 genotypes.
CONCLUSIONSD9N and N291S gene mutations may not be risk factors associated with cardiovascular diseases in children with obesity. S447X gene mutation might not play an important role in the development of cardiovascular diseases in childhood.
Adolescent ; Cardiovascular Diseases ; etiology ; genetics ; Child ; Female ; Humans ; Lipoprotein Lipase ; genetics ; Male ; Mutation ; Obesity ; genetics ; Risk Factors