1.Blood and synovial tissue metabolomics of rheumatoid arthritis rats treated with less polar ginsenosides
Jing FENG ; Yuan YU ; Linmeng SONG ; Hanyi GAO ; Yuqing CAO ; Feiyan TAO ; Peng XUE ; Shaojian TANG
Chinese Journal of Rheumatology 2023;27(5):315-320,C5-3-C5-4
Objective:The therapeutic effect of less polar ginsenosides on rats with rheumatoid arthritis was studied, and the metabolic pathway that produce anti-inflammatory effect of less polar ginsenosides was identified.Methods:Rats were randomly divided into the control group, the model group, methotrexate treatment group, and high dose, medium dose, and low dose less polar ginsenosides groups. After 30 days of oral administration, less polar ginsenosides reduced the disease activity significantly in rats with rheumatoid arthritis. Blood and ankle synovial tissue metabolisms were measured by ultra performance liquid chromatography (UPLC) tandem mass spectrometry (MS) to explore the mechanism of less polar ginsenosides.The resulting data were subjected to principal component analysis and orthogonal partial least squares discriminant analysis(OPLS-DA).Results:Compared with the model group, erythrocyte sedimentation rate and RF decreased significantly in the high dose of less polar ginsenosides ( P<0.01). Metabolomics showed that R2X and R2Y of serum OPLS-DA were 0.626 and 0.904 respectively. The R2X and R2Y of synovial OPLS-DA were 0.429 and 0.689 respectively. Major differential metabolites were identified in the model group of rats, including arachidonic acid, valine, linoleic acid, and guanine nucleoside, etc. The main differential metabolites were identified in rats in the high dose group of less polar ginsenosides, including linoleic acid, betaine, eicosapentaenoic acid, alanine, methionine sulfoxide, isoleucine, etc. Conclusion:The metabolic spectrum has shown that inflammation is associated with linoleic acid metabolism, valine, leucine and isoleucine degradation, arachidonic acid metabolism. Less polar ginsenosides regulatethe linolenic acid metabolism, methionine metabolism and glucose alanine cycle.
2.Ameliorative effect of rare ginsenosides on reproductive injury induced by cyclophosphamide in female rats: based on metabonomics
Feiyan TAO ; Huagang MA ; Yuqing CAO ; Xueying JI ; Linmeng SONG ; Peng XUE
Chinese Journal of Obstetrics and Gynecology 2024;59(5):391-400
Objective:To investigate the effect of rare ginsenosides (RGS) on reproductive injury induced by cyclophosphamide (CP) in female rats.Methods:Twenty-four female rats were divided into four groups [normal control (NC), RGS, CP, and CP+RGS group] with 6 rats in each group. CP group (the model group) and CP+RGS group (the treatment group) were intraperitoneally injected with CP 30 mg/kg for 5 days for modeling, and CP+RGS group was given RGS intragastric intervention. General growth status of rats in each group was observed, the organ index was calculated, and the pathological changes of ovary, uterus, liver and kidney were observed by hematoxylin-eosin staining. Serum levels of estradiol, follicle stimulating hormone (FSH), luteinizing hormone (LH), pro-inflammatory factors interleukin (IL) 6, IL-1β, tumor necrosis factor-α were detected. The urine samples were collected after RGS treatment for metabonomics analysis. Metabolomic profiling based on ultra performance liquid chromatography (UPLC) coupled with mass spectrometry (MS) was used to analyze and determine the urine metabolites of rats in each group.Results:Compared with NC group, the ovary index of CP group [(0.054±0.015) %] was significantly decreased ( P<0.05), the uterus index [(0.293±0.036) %] and estradiol level [(62.9±6.4) pmol/L] were significantly decreased (all P<0.01), serum levels of FSH, LH, IL-6 and IL-1β [(20.4±1.0) U/L, (29.0±3.0) U/L, (185.4±28.6) ng/L, (72.9±2.0) ng/L, respectively] were significantly increased (all P<0.01). Compared with CP group, the ovary index in CP+RGS group [(0.075±0.010) %] was significantly increased ( P<0.05), serum estradiol level [(122.1±16.2) pmol/L] was significantly increased ( P<0.01), serum FSH, IL-1β and IL-6 levels [(16.7±1.0) U/L, (111.8±17.4) ng/L, (60.1±2.2) ng/L, respectively] were significantly decreased (all P<0.01). Metabonomics analysis results showed that, a total of 352 metabolites were detected in urine, of which 12 were found to be potential markers associated with reproductive injury according to the screening standard. After treatment with RGS, differential metabolites were improved in the direction of NC group. Pathway enrichment suggests that the therapeutic effect of RGS was related to multiple metabolic pathways, including purine metabolism and taurine and hypotaurine metabolism. Conclusion:RGS might reduce inflammation and thus ameliorate the damage caused by CP to the reproductive system of female rats by affecting purine metabolism and other pathways.