1.A comparison between cDNA and DNA samples for the detection of c-KIT exon 17 mutation in acute myeloid leukemia patients
Lu YANG ; Hong LIU ; Wenmin CHEN ; Lingdi LI ; Lingyu LONG ; Yanrong LIU ; Yazhen QIN
Chinese Journal of Laboratory Medicine 2019;42(6):453-457
Objective To investigate the impact of sample typeon the detection of c-KIT exon 17 mutation in acute myeloid leukemia (AML) patients. Methods A retrospective study was conducted on 51 bone marrow samples collected from 37 AML patients [17 maleand 20 female, with a median age of 33 (range from 1 to 82)] at diagnosis or after treatment from June 2016 to August 2018. Of the 37 cases of AML, 24 were t(8; 21) AML, 11 were inv(16)/t(16;16) AML and 2 were non-CBF-AML. RNA and DNA were simultaneously extracted from every sample. PCR followed by Sanger sequencing were used to screen c-KIT exon 17 mutation, and the comparisons were made between paired cDNA and DNAsamples. Results (1) Of the 51 paired samples, 14 pairs were simultaneously detected positive for c-KITmutation in both of cDNA and DNA samples, but 17 pairs were detected negative in both, and the remaining 20 pairswere only detected positive for the mutation in cDNA but not in DNA, with an inconsistency rate of 39.2%. The positive rate of detecting c-KITmutation was significantly higher in cDNA than in DNA samples (66.7%vs 27.5%,P=0.000073). (2)Inconsistent mutation results between paired cDNA and DNA samples occurred in t(8;21)AML, inv(16)AML and non-CBF-AML patients with the inconsistency rate of 36.4%(12/33), 27.2%(3/11) and 71.4% (5/7), respectively. (3)The inconsistency rate was significantly higher in samples collected after treatment compared with those collected at diagnosis (72.7%vs 13.8%, P=0.00003). (4) All 5 serially monitored patients with c-KITmutation had inconsistency in mutation detection between cDNA and DNA samples during follow up. Conclusion cDNA improves the detection of c-KIT exon 17 mutation in AML patients compared with DNA, which is especially common after treatment.
2.Scutellarin alleviates lipopolysaccharide-induced renal injury via mediating cysteine-rich protein 61-connective tissue growth factor-nephroblastoma overexpressed gene 1 expression to inhibit nuclear factor-κB signaling pathway
Xue LIU ; Zhenzhi QIN ; Chen GUAN ; Lingyu XU ; Jie DAI ; Chengyu YANG ; Bin ZHOU ; Hong LUAN ; Long ZHAO ; Wei ZHANG ; Congjuan LUO ; Yan XU
Chinese Critical Care Medicine 2022;34(4):400-406
Objective:To explore the protective effect and mechanism of scutellarin (Scu) on sepsis associated-acute kidney injury (SA-AKI).Methods:① In vivo experiment: 36 male C57BL/6 mice were divided into normal saline (NS) control group, lipopolysaccharide (LPS) induced SA-AKI model group (LPS group), 20 mg/kg Scu control group (Scu 20 control group), and 5, 10, 20 mg/kg Scu pretreatment groups by random number table with 6 mice in each group. The SA-AKI model was reproduced by intraperitoneal injection of 10 mg/kg LPS. The NS control group was injected with NS intraperitoneally. The Scu pretreatment groups were intraperitoneally injected with different doses of Scu every day before LPS injection for 1 week. Scu 20 control group was injected with 20 mg/kg Scu for 1 week. After 24 hours of LPS treatment, mice in each group were sacrificed, kidney tissues were collected, and kidney injury was detected by hematoxylin-eosin (HE) staining. Western blotting was used to detect the protein expression levels of nuclear factor-κB (NF-κB) signaling pathway related molecules, apoptosis-related proteins and cysteine-rich protein 61-connective tissue growth factor-nephroblastoma overexpressed gene 1 (CCN1). ② In vitro experiment: human renal tubular epithelial cell line HK-2 was cultured in vitro and used for experiment when the cells fused to 80%. In the cells without LPS treatment and after 100 g/L LPS treatment, pcDNA3.1-CCN1 and small interfering RNA (siRNA) CCN1 sequence were transfected to overexpress and inhibit CCN1 expression, respectively, to observe whether CCN1 was involved in NF-κB signaling pathway activation and apoptosis. In addition, 100g/L LPS and 20 μmol/L Scu were added into HK-2 cells transfected with and without CCN1 siRNA to investigate the mechanism of protective effect of Scu on LPS-induced HK-2 cells injury. Results:① The results of in vivo experiment: the renal function of SA-AKI mice induced by LPS was significantly decreased, and had kidney histological damage and severely damaged renal tubules. Scu could alleviate renal function and histological damage in a dose-dependent manner. Western blotting results showed Scu could reduce the protein expression of NF-κB signaling pathway related molecules and CCN1 in the renal tissue, and had a significant alleviating effect on apoptosis, indicating that CCN1 was involved in NF-κB signaling pathway activation and apoptosis. ② The results of in vitro experiment: in HK-2 cells not treated with LPS, CCN1 overexpression had no effect on apoptosis related protein and pro-inflammatory factors of NF-κB signaling pathway. In HK-2 cells treated with LPS, overexpression of CCN1 significantly inhibited the mRNA expressions of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), with significant differences as compared with cells stimulated only by LPS [IL-1β mRNA (2 -ΔΔCT): 3.20±0.57 vs. 4.88±0.69, TNF-α mRNA (2 -ΔΔCT): 2.99±0.44 vs. 5.00±0.81, MCP-1 mRNA (2 -ΔΔCT): 2.81±0.50 vs. 5.41±0.75, all P < 0.05], and the apoptosis-related protein was significantly down-regulated. However, when siRNA was used to inhibit the expression of CCN1, the mRNA expressions of pro-inflammatory factors were significantly increased as compared with cells stimulated only by LPS [IL-1β mRNA (2 -ΔΔCT): 6.01±1.13 vs. 4.88±0.69, TNF-α mRNA (2 -ΔΔCT): 5.15±0.86 vs. 5.00±0.81, all P < 0.05], and apoptosis-related protein was significantly up-regulated. In the LPS-induced HK-2 cells, the mRNA expressions of pro-inflammatory factors were significantly down-regulated after Scu treatment as compared with cells stimulated only by LPS [IL-1β mRNA (2 -ΔΔCT) : 2.55±0.50 vs. 6.15±1.04, TNF-α mRNA (2 -ΔΔCT): 2.58±0.40 vs. 3.95±0.52, MCP-1 mRNA (2 -ΔΔCT): 2.64±0.44 vs. 6.21±0.96, all P < 0.05], and apoptosis-related protein was also significantly reduced. When the expression of CCN1 was inhibited by siRNA, the protective effect of Scu on cells was weakened, which showed that the mRNA expressions of pro-inflammatory factors in cells was significantly up-regulated compared with the cells without inhibition of CCN1 expression [IL-1β mRNA (2 -ΔΔCT): 5.34±0.76 vs. 2.55±0.50, TNF-α mRNA (2 -ΔΔCT): 3.66±0.54 vs. 2.58±0.40, MCP-1 mRNA (2 -ΔΔCT): 5.15±0.79 vs. 2.64±0.44, all P < 0.05], and the expression of apoptosis related protein was also significantly up-regulated. Conclusions:Scu could protect the renal function in SA-AKI mice, and the protective effect is associated with NF-κB signaling pathway and CCN1. Thus, Scu could alleviate LPS-induced kidney injury by regulating the NF-κB signaling pathway.
3. An interlaboratory comparison study on the detection of RUNX1-RUNX1T1 fusion transcript levels and WT1 transcript levels
Yazhen QIN ; Liwen ZHU ; Shuang LIN ; Suxia GENG ; Shengwei LIU ; Hui CHENG ; Chengye WU ; Min XIAO ; Xiaoqing LI ; Ruiping HU ; Lili WANG ; Haiyan LIU ; Daoxin MA ; Tao GUAN ; Yuanxin YE ; Ting NIU ; Jiannong CEN ; Lisha LU ; Li SUN ; Tonghua YANG ; Yungui WANG ; Tao LI ; Yue WANG ; Qinghua LI ; Xiaosu ZHAO ; Lingdi LI ; Wenmin CHEN ; Lingyu LONG ; Xiaojun HUANG
Chinese Journal of Hematology 2019;40(11):889-894
Objective:
To investigate the current status and real performance of the detection of RUNX1-RUNX1T1 fusion transcript levels and WT1 transcript levels in China through interlaboratory comparison.
Methods:
Peking University People’s Hospital (PKUPH) prepared the samples for comparison. That is, the fresh RUNX1-RUNX1T1 positive (+) bone morrow nucleated cells were serially diluted with RUNX1-RUNX1T1 negative (-) nucleated cells from different patients. Totally 23 sets with 14 different samples per set were prepared. TRIzol reagent was added in each tube and thoroughly mixed with cells for homogenization. Each laboratory simultaneously tested RUNX1-RUNX1T1 and WT1 transcript levels of one set of samples by real-time quantitative PCR method. All transcript levels were reported as the percentage of RUNX1-RUNX1T1 or WT1 transcript copies/ABL copies. Spearman correlation coefficient between the reported transcript levels of each participated laboratory and those of PKUPH was calculated.
Results:
①RUNX1-RUNX1T1 comparison: 9 samples were (+) and 5 were (-) , the false negative and positive rates of the 20 participated laboratories were 0 (0/180) and 5% (5/100) , respectively. The reported transcript levels of all 9 positive samples were different among laboratories. The median reported transcript levels of 9 positive samples were from 0.060% to 176.7%, which covered 3.5-log. The ratios of each sample’s highest to the lowest reported transcript levels were from 5.5 to 12.3 (one result which obviously deviated from other laboratories’ results was not included) , 85% (17/20) of the laboratories had correlation coefficient ≥0.98. ②WT1 comparison: The median reported transcript levels of all 14 samples were from 0.17% to 67.6%, which covered 2.6-log. The ratios of each sample’s highest to the lowest reported transcript levels were from 5.3-13.7, 62% (13/21) of the laboratories had correlation coefficient ≥0.98. ③ The relative relationship of the reported RUNX1-RUNX1T1 transcript levels between the participants and PKUPH was not always consistent with that of WT1 transcript levels. Both RUNX1-RUNX1T1 and WT1 transcript levels from 2 and 7 laboratories were individually lower than and higher than those of PKUPH, whereas for the rest 11 laboratories, one transcript level was higher than and the other was lower than that of PKUPH.
Conclusion
The reported RUNX1-RUNX1T1 and WT1 transcript levels were different among laboratories for the same sample. Most of the participated laboratories reported highly consistent result with that of PKUPH. The relationship between laboratories of the different transcript levels may not be the same.