1.Atorvastatin inhibits macrophage-derived foam cell formation by suppressing the activation of PPARγ and NF-κB pathway.
Xiaofeng CHENG ; Xiaoyan LIU ; Lingkun SONG ; Yun HE ; Xiaoqing LI ; Hao ZHANG
Journal of Southern Medical University 2014;34(6):896-900
OBJECTIVETo evaluate whether atorvastatin inhibits oxidized low-density lipoproteins (Ox-LDL)-stimulated foam cell formation from THP-1 macrophages by regulating the activation of peroxisome proliferator-activated receptor γ (PPARγ) and nuclear factor-κB (NF-κB). Methods THP-1 macrophages were pretreated with 10, 20, or 40 µmol/L atorvastatin for 2 h, and after washing with PBS twice, the cells were incubated with 60 µg/ml of Ox-LDL for 48 h. The quantity of intracellular lipid of the cells was detected with Oil red O staining and enzymatic fluorometric method. The expression of the scavenger receptors of CD36 and SRA were analyzed with Western blotting. We also examined the effect of atorvastatin on adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) expression and the activation of PPARγ and p-iκB, and further assessed the capacity of the macrophages to bind to Dil-oxLDL.
RESULTSAtorvastatin potently inhibited ox-LDL-induced macrophage-derived foam cell formation, down-regulated the expression of CD36 and SRA, and up-regulated the expression of ABCA1. Atorvastatin markedly suppressed the activation of PPARγ and p-iκB in ox-LDL-stimulated THP-1 macrophages (P<0.05) and significantly decreased the Dil-oxLDL-binding capacity of the macrophages (P<0.05).
CONCLUSIONAtorvastatin as an effective anti-atherosclerosis agent can suppress the activation of PPARγ and p-iκB to reduce lipid accumulation in macrophages.
ATP Binding Cassette Transporter 1 ; metabolism ; Atorvastatin Calcium ; Cell Line ; Foam Cells ; cytology ; drug effects ; Heptanoic Acids ; pharmacology ; Humans ; I-kappa B Proteins ; metabolism ; Lipoproteins, LDL ; metabolism ; Macrophages ; cytology ; drug effects ; NF-kappa B ; metabolism ; PPAR gamma ; metabolism ; Pyrroles ; pharmacology ; Signal Transduction ; drug effects ; Transcriptional Activation ; Up-Regulation
2.Relation between rs2298771 genotype in voltage-gated sodium channels 1A polymorphism and antiepileptic drug response in children with epilepsy
Xueyuan LI ; Lingkun HAO ; Xu FENG ; Wen LI ; Shumin YUE ; Long TIAN
Chinese Journal of Neuromedicine 2024;23(3):225-232
Objective:To investigate the relation between rs2298771 genotype in voltage-gated sodium channels 1A ( SCN1A) polymorphism and antiepileptic drug (AED) response in children with epilepsy. Methods:Sixty-two children with epilepsy admitted to Department of Neurology, Zhangjiakou First Hospital from June 2022 to December 2023 were divided into AED response group and AED resistance group ( n=31) according to their response to AED. In addition, 31 children with pharyngitis or mild gastroenteritis admitted to Department of Pediatrics at the same period were selected as control group. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze the rs2298771 genotype in SCN1A polymorphism, and differences in rs2298771 genotype and allele in SCN1A polymorphism were compared among the 3 groups. Relation between rs2298771 genotype in SCN1A polymorphism and AED response was analyzed. Multivariate Logistic regression was used to analyze the influencing factors for AED response in children with epilepsy. Results:(1) Significant differences in type of first seizure and AEDs were noted between AED response group and AED resistance group ( P<0.05); compared with the AED resistance group, the AED response group had significantly lower seizure frequency, significantly longer duration after last seizure, and statistically higher proportions of children with normal EEG or with one kind of AED ( P?0.05). (2) Compared with the control group and AED response group, the AED resistance group had significantly higher rs2298771 GC genotype and G allele, and statistically lower rs2298771 AA genotype and A allele in SCN1A polymorphism ( P?0.05). (3) In the AED response group, rs2298771 AA and AG genotype in SCN1A polymorphism were positively correlated with levetiracetam ( P?0.05); in AED resistance group, rs2298771 AG genotype in SCN1A polymorphism was positively correlated with topiramate and valproic acid ( P<0.05). (4) Multivariate Logistic regression analysis showed that duration after last seizure ( OR=3.249, 95% CI=1.097-9.621, P=0.033), rs2298771 genotype in SCN1A polymorphism ( OR=9.660, 95% CI=4.680-19.970, P=0.011) and seizure frequency ( OR=0.160, 95% CI=0.032-0.804, P=0.026) were independent influencing factors for AED response in children with epilepsy. Conclusion:Epilepsy children with shorter duration after last seizure, rs2298771 GG genotype in SCN1A polymorphism, and high seizure frequency are susceptible to AED resistance; especially, AG genotype is correlated with topiramate and valproic acid.