2.Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical bayesian approach
Michael H. LE ; Yee Hui YEO ; Biyao ZOU ; Scott BARNET ; Linda HENRY ; Ramsey CHEUNG ; Mindie H. NGUYEN
Clinical and Molecular Hepatology 2022;28(4):841-850
Background/Aims:
Due to increases in obesity and type 2 diabetes, the prevalence of nonalcoholic fatty liver disease (NAFLD) has also been increasing. Current forecast models may not include non-obese NAFLD. Here, we used the Bayesian approach to forecast the prevalence of NAFLD through the year 2040.
Methods:
Prevalence data from 245 articles involving 2,699,627 persons were used with a hierarchical Bayesian approach to forecast the prevalence of NAFLD through 2040. Subgroup analyses were performed for age, gender, presence of metabolic syndrome, region, and smoking status. Sensitivity analysis was conducted for clinical setting and study quality.
Results:
The forecasted 2040 prevalence was 55.7%, a three-fold increase since 1990 and a 43.2% increase from the 2020 prevalence of 38.9%. The estimated average yearly increase since 2020 was 2.16%. For those aged <50 years and ≥50 years, the 2040 prevalence were not significantly different (56.7% vs. 61.5%, P=0.52). There was a significant difference in 2040 prevalence by sex (males: 60% vs. 50%) but the trend was steeper for females (annual percentage change: 2.5% vs. 1.5%, P=0.025). There was no difference in trends overtime by region (P=0.48). The increase rate was significantly higher in those without metabolic syndrome (3.8% vs. 0.84%, P=0.003) and smokers (1.4% vs. 1.1%, P=0.011). There was no difference by clinical/community setting (P=0.491) or study quality (P=0.85).
Conclusion
By 2040, over half the adult population is forecasted to have NAFLD. The largest increases are expected to occur in women, smokers, and those without metabolic syndrome. Intensified efforts are needed to raise awareness of NAFLD and to determine long-term solutions addressing the driving factors of the disease.
3.High Prevalence of Slow Transit Constipation in Patients With Gastroparesis
Thomas A ZIKOS ; Afrin N KAMAL ; Leila NESHATIAN ; George TRIADAFILOPOULOS ; John O CLARKE ; Monica NANDWANI ; Linda A NGUYEN
Journal of Neurogastroenterology and Motility 2019;25(2):267-275
BACKGROUND/AIMS: Current evidence suggests the presence of motility or functional abnormalities in one area of the gastrointestinal tract increases the likelihood of abnormalities in others. However, the relationship of gastroparesis to chronic constipation (slow transit constipation and dyssynergic defecation) has been incompletely evaluated. METHODS: We retrospectively reviewed the records of all patients with chronic dyspeptic symptoms and constipation who underwent both a solid gastric emptying scintigraphy and a high-resolution anorectal manometry at our institution since January 2012. When available, X-ray defecography and radiopaque marker colonic transit studies were also reviewed. Based on the gastric emptying results, patients were classified as gastroparesis or dyspepsia with normal gastric emptying (control group). Differences in anorectal and colonic findings were then compared between groups. RESULTS: Two hundred and six patients met the inclusion criteria. Patients with gastroparesis had higher prevalence of slow transit constipation by radiopaque marker study compared to those with normal emptying (64.7% vs 28.1%, P = 0.013). Additionally, patients with gastroparesis had higher rates of rectocele (88.9% vs 60.0%, P = 0.008) and intussusception (44.4% vs 12.0%, P = 0.001) compared to patients with normal emptying. There was no difference in the rate of dyssynergic defecation between those with gastroparesis vs normal emptying (41.1% vs 42.1%, P = 0.880), and no differences in anorectal manometry findings. CONCLUSIONS: Patients with gastroparesis had a higher rate of slow transit constipation, but equal rates of dyssynergic defecation compared to patients with normal gastric emptying. These findings argue for investigation of possible delayed colonic transit in patients with gastroparesis and vice versa.
Colon
;
Constipation
;
Defecation
;
Defecography
;
Dyspepsia
;
Gastric Emptying
;
Gastrointestinal Tract
;
Gastroparesis
;
Humans
;
Intussusception
;
Manometry
;
Pelvic Floor Disorders
;
Prevalence
;
Radionuclide Imaging
;
Rectocele
;
Retrospective Studies
4.Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality
Thanh N. NGUYEN ; Muhammad M. QURESHI ; Piers KLEIN ; Hiroshi YAMAGAMI ; Mohamad ABDALKADER ; Robert MIKULIK ; Anvitha SATHYA ; Ossama Yassin MANSOUR ; Anna CZLONKOWSKA ; Hannah LO ; Thalia S. FIELD ; Andreas CHARIDIMOU ; Soma BANERJEE ; Shadi YAGHI ; James E. SIEGLER ; Petra SEDOVA ; Joseph KWAN ; Diana Aguiar DE SOUSA ; Jelle DEMEESTERE ; Violiza INOA ; Setareh Salehi OMRAN ; Liqun ZHANG ; Patrik MICHEL ; Davide STRAMBO ; João Pedro MARTO ; Raul G. NOGUEIRA ; ; Espen Saxhaug KRISTOFFERSEN ; Georgios TSIVGOULIS ; Virginia Pujol LEREIS ; Alice MA ; Christian ENZINGER ; Thomas GATTRINGER ; Aminur RAHMAN ; Thomas BONNET ; Noémie LIGOT ; Sylvie DE RAEDT ; Robin LEMMENS ; Peter VANACKER ; Fenne VANDERVORST ; Adriana Bastos CONFORTO ; Raquel C.T. HIDALGO ; Daissy Liliana MORA CUERVO ; Luciana DE OLIVEIRA NEVES ; Isabelle LAMEIRINHAS DA SILVA ; Rodrigo Targa MARTÍNS ; Letícia C. REBELLO ; Igor Bessa SANTIAGO ; Teodora SADELAROVA ; Rosen KALPACHKI ; Filip ALEXIEV ; Elena Adela CORA ; Michael E. KELLY ; Lissa PEELING ; Aleksandra PIKULA ; Hui-Sheng CHEN ; Yimin CHEN ; Shuiquan YANG ; Marina ROJE BEDEKOVIC ; Martin ČABAL ; Dusan TENORA ; Petr FIBRICH ; Pavel DUŠEK ; Helena HLAVÁČOVÁ ; Emanuela HRABANOVSKA ; Lubomír JURÁK ; Jana KADLČÍKOVÁ ; Igor KARPOWICZ ; Lukáš KLEČKA ; Martin KOVÁŘ ; Jiří NEUMANN ; Hana PALOUŠKOVÁ ; Martin REISER ; Vladimir ROHAN ; Libor ŠIMŮNEK ; Ondreij SKODA ; Miroslav ŠKORŇA ; Martin ŠRÁMEK ; Nicolas DRENCK ; Khalid SOBH ; Emilie LESAINE ; Candice SABBEN ; Peggy REINER ; Francois ROUANET ; Daniel STRBIAN ; Stefan BOSKAMP ; Joshua MBROH ; Simon NAGEL ; Michael ROSENKRANZ ; Sven POLI ; Götz THOMALLA ; Theodoros KARAPANAYIOTIDES ; Ioanna KOUTROULOU ; Odysseas KARGIOTIS ; Lina PALAIODIMOU ; José Dominguo BARRIENTOS GUERRA ; Vikram HUDED ; Shashank NAGENDRA ; Chintan PRAJAPATI ; P.N. SYLAJA ; Achmad Firdaus SANI ; Abdoreza GHOREISHI ; Mehdi FARHOUDI ; Elyar SADEGHI HOKMABADI ; Mazyar HASHEMILAR ; Sergiu Ionut SABETAY ; Fadi RAHAL ; Maurizio ACAMPA ; Alessandro ADAMI ; Marco LONGONI ; Raffaele ORNELLO ; Leonardo RENIERI ; Michele ROMOLI ; Simona SACCO ; Andrea SALMAGGI ; Davide SANGALLI ; Andrea ZINI ; Kenichiro SAKAI ; Hiroki FUKUDA ; Kyohei FUJITA ; Hirotoshi IMAMURA ; Miyake KOSUKE ; Manabu SAKAGUCHI ; Kazutaka SONODA ; Yuji MATSUMARU ; Nobuyuki OHARA ; Seigo SHINDO ; Yohei TAKENOBU ; Takeshi YOSHIMOTO ; Kazunori TOYODA ; Takeshi UWATOKO ; Nobuyuki SAKAI ; Nobuaki YAMAMOTO ; Ryoo YAMAMOTO ; Yukako YAZAWA ; Yuri SUGIURA ; Jang-Hyun BAEK ; Si Baek LEE ; Kwon-Duk SEO ; Sung-Il SOHN ; Jin Soo LEE ; Anita Ante ARSOVSKA ; Chan Yong CHIEH ; Wan Asyraf WAN ZAIDI ; Wan Nur Nafisah WAN YAHYA ; Fernando GONGORA-RIVERA ; Manuel MARTINEZ-MARINO ; Adrian INFANTE-VALENZUELA ; Diederik DIPPEL ; Dianne H.K. VAN DAM-NOLEN ; Teddy Y. WU ; Martin PUNTER ; Tajudeen Temitayo ADEBAYO ; Abiodun H. BELLO ; Taofiki Ajao SUNMONU ; Kolawole Wasiu WAHAB ; Antje SUNDSETH ; Amal M. AL HASHMI ; Saima AHMAD ; Umair RASHID ; Liliana RODRIGUEZ-KADOTA ; Miguel Ángel VENCES ; Patrick Matic YALUNG ; Jon Stewart Hao DY ; Waldemar BROLA ; Aleksander DĘBIEC ; Malgorzata DOROBEK ; Michal Adam KARLINSKI ; Beata M. LABUZ-ROSZAK ; Anetta LASEK-BAL ; Halina SIENKIEWICZ-JAROSZ ; Jacek STASZEWSKI ; Piotr SOBOLEWSKI ; Marcin WIĄCEK ; Justyna ZIELINSKA-TUREK ; André Pinho ARAÚJO ; Mariana ROCHA ; Pedro CASTRO ; Patricia FERREIRA ; Ana Paiva NUNES ; Luísa FONSECA ; Teresa PINHO E MELO ; Miguel RODRIGUES ; M Luis SILVA ; Bogdan CIOPLEIAS ; Adela DIMITRIADE ; Cristian FALUP-PECURARIU ; May Adel HAMID ; Narayanaswamy VENKETASUBRAMANIAN ; Georgi KRASTEV ; Jozef HARING ; Oscar AYO-MARTIN ; Francisco HERNANDEZ-FERNANDEZ ; Jordi BLASCO ; Alejandro RODRÍGUEZ-VÁZQUEZ ; Antonio CRUZ-CULEBRAS ; Francisco MONICHE ; Joan MONTANER ; Soledad PEREZ-SANCHEZ ; María Jesús GARCÍA SÁNCHEZ ; Marta GUILLÁN RODRÍGUEZ ; Gianmarco BERNAVA ; Manuel BOLOGNESE ; Emmanuel CARRERA ; Anchalee CHUROJANA ; Ozlem AYKAC ; Atilla Özcan ÖZDEMIR ; Arsida BAJRAMI ; Songul SENADIM ; Syed I. HUSSAIN ; Seby JOHN ; Kailash KRISHNAN ; Robert LENTHALL ; Kaiz S. ASIF ; Kristine BELOW ; Jose BILLER ; Michael CHEN ; Alex CHEBL ; Marco COLASURDO ; Alexandra CZAP ; Adam H. DE HAVENON ; Sushrut DHARMADHIKARI ; Clifford J. ESKEY ; Mudassir FAROOQUI ; Steven K. FESKE ; Nitin GOYAL ; Kasey B. GRIMMETT ; Amy K. GUZIK ; Diogo C. HAUSSEN ; Majesta HOVINGH ; Dinesh JILLELA ; Peter T. KAN ; Rakesh KHATRI ; Naim N. KHOURY ; Nicole L. KILEY ; Murali K. KOLIKONDA ; Stephanie LARA ; Grace LI ; Italo LINFANTE ; Aaron I. LOOCHTAN ; Carlos D. LOPEZ ; Sarah LYCAN ; Shailesh S. MALE ; Fadi NAHAB ; Laith MAALI ; Hesham E. MASOUD ; Jiangyong MIN ; Santiago ORGETA-GUTIERREZ ; Ghada A. MOHAMED ; Mahmoud MOHAMMADEN ; Krishna NALLEBALLE ; Yazan RADAIDEH ; Pankajavalli RAMAKRISHNAN ; Bliss RAYO-TARANTO ; Diana M. ROJAS-SOTO ; Sean RULAND ; Alexis N. SIMPKINS ; Sunil A. SHETH ; Amy K. STAROSCIAK ; Nicholas E. TARLOV ; Robert A. TAYLOR ; Barbara VOETSCH ; Linda ZHANG ; Hai Quang DUONG ; Viet-Phuong DAO ; Huynh Vu LE ; Thong Nhu PHAM ; Mai Duy TON ; Anh Duc TRAN ; Osama O. ZAIDAT ; Paolo MACHI ; Elisabeth DIRREN ; Claudio RODRÍGUEZ FERNÁNDEZ ; Jorge ESCARTÍN LÓPEZ ; Jose Carlos FERNÁNDEZ FERRO ; Niloofar MOHAMMADZADEH ; Neil C. SURYADEVARA, MD ; Beatriz DE LA CRUZ FERNÁNDEZ ; Filipe BESSA ; Nina JANCAR ; Megan BRADY ; Dawn SCOZZARI
Journal of Stroke 2022;24(2):256-265
Background:
and Purpose Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year.
Methods:
We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020).
Results:
There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths.
Conclusions
During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT.