1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
7.New model of PIRADS and adjusted prostatespecific antigen density of peripheral zone improves the detection rate of initial prostate biopsy: a diagnostic study.
Chen HUANG ; Zong-Qiang CAI ; Feng QIU ; Jin-Xian PU ; Qi-Lin XI ; Xue-Dong WEI ; Xi-Ming WANG ; Xiao-Jun ZHAO ; Lin-Chuan GUO ; Jian-Quan HOU ; Yu-Hua HUANG
Asian Journal of Andrology 2023;25(1):126-131
This study explored a new model of Prostate Imaging Reporting and Data System (PIRADS) and adjusted prostate-specific antigen density of peripheral zone (aPSADPZ) for predicting the occurrence of prostate cancer (PCa) and clinically significant prostate cancer (csPCa). The demographic and clinical characteristics of 853 patients were recorded. Prostate-specific antigen (PSA), PSA density (PSAD), PSAD of peripheral zone (PSADPZ), aPSADPZ, and peripheral zone volume ratio (PZ-ratio) were calculated and subjected to receiver operating characteristic (ROC) curve analysis. The calibration and discrimination abilities of new nomograms were verified with the calibration curve and area under the ROC curve (AUC). The clinical benefits of these models were evaluated by decision curve analysis and clinical impact curves. The AUCs of PSA, PSAD, PSADPZ, aPSADPZ, and PZ-ratio were 0.669, 0.762, 0.659, 0.812, and 0.748 for PCa diagnosis, while 0.713, 0.788, 0.694, 0.828, and 0.735 for csPCa diagnosis, respectively. All nomograms displayed higher net benefit and better overall calibration than the scenarios for predicting the occurrence of PCa or csPCa. The new model significantly improved the diagnostic accuracy of PCa (0.945 vs 0.830, P < 0.01) and csPCa (0.937 vs 0.845, P < 0.01) compared with the base model. In addition, the number of patients with PCa and csPCa predicted by the new model was in good agreement with the actual number of patients with PCa and csPCa in high-risk threshold. This study demonstrates that aPSADPZ has a higher predictive accuracy for PCa diagnosis than the conventional indicators. Combining aPSADPZ with PIRADS can improve PCa diagnosis and avoid unnecessary biopsies.
Male
;
Humans
;
Prostate/pathology*
;
Prostate-Specific Antigen/analysis*
;
Prostatic Neoplasms/diagnostic imaging*
;
Biopsy
;
Nomograms
;
Retrospective Studies
9.3- to 24-month Follow-up on COVID-19 with Pulmonary Tuberculosis Survivors after Discharge: Results from a Prospective, Multicenter Study
Ya Jing WANG ; Yu Xing ZONG ; Hui Gui WU ; Lin Yuan QI ; Zhen Hui LI ; Yu Xin JI ; Lin TONG ; Lei ZHANG ; Bo Ming YANG ; Ye Pu YANG ; Ke Ji LI ; Rong Fu XIAO ; Song Lin ZHANG ; Hong Yun HU ; De Hong LIU ; Fang Shou XU ; Sheng SUN ; Wei WU ; Ya MAO ; Qing Min LI ; Hua Hao HOU ; Yuan Zhao GONG ; Yang GUO ; Wen Li JIAO ; Jin QIN ; Yi Ding WANG ; Fang WANG ; Li GUAN ; Gang LIN ; Yan MA ; Ping Yan WANG ; Nan Nan SHI
Biomedical and Environmental Sciences 2022;35(12):1091-1099
Objective Coronavirus disease 2019 (COVID-19) and tuberculosis (TB) are major public health and social issues worldwide. The long-term follow-up of COVID-19 with pulmonary TB (PTB) survivors after discharge is unclear. This study aimed to comprehensively describe clinical outcomes, including sequela and recurrence at 3, 12, and 24 months after discharge, among COVID-19 with PTB survivors. Methods From January 22, 2020 to May 6, 2022, with a follow-up by August 26, 2022, a prospective, multicenter follow-up study was conducted on COVID-19 with PTB survivors after discharge in 13hospitals from four provinces in China. Clinical outcomes, including sequela, recurrence of COVID-19, and PTB survivors, were collected via telephone and face-to-face interviews at 3, 12, and 24 months after discharge. Results Thirty-two COVID-19 with PTB survivors were included. The median age was 52 (45, 59) years, and 23 (71.9%) were men. Among them, nearly two-thirds (62.5%) of the survivors were moderate, three (9.4%) were severe, and more than half (59.4%) had at least one comorbidity (PTB excluded). The proportion of COVID-19 survivors with at least one sequela symptom decreased from 40.6% at 3 months to 15.8% at 24 months, with anxiety having a higher proportion over a follow-up. Cough and amnesia recovered at the 12-month follow-up, while anxiety, fatigue, and trouble sleeping remained after 24 months. Additionally, one (3.1%) case presented two recurrences of PTB and no re-positive COVID-19 during the follow-up period. Conclusion The proportion of long symptoms in COVID-19 with PTB survivors decreased over time, while nearly one in six still experience persistent symptoms with a higher proportion of anxiety. The recurrence of PTB and the psychological support of COVID-19 with PTB after discharge require more attention.
10.Association of Overlapped and Un-overlapped Comorbidities with COVID-19 Severity and Treatment Outcomes: A Retrospective Cohort Study from Nine Provinces in China.
Yan MA ; Dong Shan ZHU ; Ren Bo CHEN ; Nan Nan SHI ; Si Hong LIU ; Yi Pin FAN ; Gui Hui WU ; Pu Ye YANG ; Jiang Feng BAI ; Hong CHEN ; Li Ying CHEN ; Qiao FENG ; Tuan Mao GUO ; Yong HOU ; Gui Fen HU ; Xiao Mei HU ; Yun Hong HU ; Jin HUANG ; Qiu Hua HUANG ; Shao Zhen HUANG ; Liang JI ; Hai Hao JIN ; Xiao LEI ; Chun Yan LI ; Min Qing LI ; Qun Tang LI ; Xian Yong LI ; Hong De LIU ; Jin Ping LIU ; Zhang LIU ; Yu Ting MA ; Ya MAO ; Liu Fen MO ; Hui NA ; Jing Wei WANG ; Fang Li SONG ; Sheng SUN ; Dong Ting WANG ; Ming Xuan WANG ; Xiao Yan WANG ; Yin Zhen WANG ; Yu Dong WANG ; Wei WU ; Lan Ping WU ; Yan Hua XIAO ; Hai Jun XIE ; Hong Ming XU ; Shou Fang XU ; Rui Xia XUE ; Chun YANG ; Kai Jun YANG ; Sheng Li YUAN ; Gong Qi ZHANG ; Jin Bo ZHANG ; Lin Song ZHANG ; Shu Sen ZHAO ; Wan Ying ZHAO ; Kai ZHENG ; Ying Chun ZHOU ; Jun Teng ZHU ; Tian Qing ZHU ; Hua Min ZHANG ; Yan Ping WANG ; Yong Yan WANG
Biomedical and Environmental Sciences 2020;33(12):893-905
Objective:
Several COVID-19 patients have overlapping comorbidities. The independent role of each component contributing to the risk of COVID-19 is unknown, and how some non-cardiometabolic comorbidities affect the risk of COVID-19 remains unclear.
Methods:
A retrospective follow-up design was adopted. A total of 1,160 laboratory-confirmed patients were enrolled from nine provinces in China. Data on comorbidities were obtained from the patients' medical records. Multivariable logistic regression models were used to estimate the odds ratio (
Results:
Overall, 158 (13.6%) patients were diagnosed with severe illness and 32 (2.7%) had unfavorable outcomes. Hypertension (2.87, 1.30-6.32), type 2 diabetes (T2DM) (3.57, 2.32-5.49), cardiovascular disease (CVD) (3.78, 1.81-7.89), fatty liver disease (7.53, 1.96-28.96), hyperlipidemia (2.15, 1.26-3.67), other lung diseases (6.00, 3.01-11.96), and electrolyte imbalance (10.40, 3.00-26.10) were independently linked to increased odds of being severely ill. T2DM (6.07, 2.89-12.75), CVD (8.47, 6.03-11.89), and electrolyte imbalance (19.44, 11.47-32.96) were also strong predictors of unfavorable outcomes. Women with comorbidities were more likely to have severe disease on admission (5.46, 3.25-9.19), while men with comorbidities were more likely to have unfavorable treatment outcomes (6.58, 1.46-29.64) within two weeks.
Conclusion
Besides hypertension, diabetes, and CVD, fatty liver disease, hyperlipidemia, other lung diseases, and electrolyte imbalance were independent risk factors for COVID-19 severity and poor treatment outcome. Women with comorbidities were more likely to have severe disease, while men with comorbidities were more likely to have unfavorable treatment outcomes.
Adult
;
Aged
;
COVID-19/virology*
;
China/epidemiology*
;
Comorbidity
;
Female
;
Humans
;
Male
;
Middle Aged
;
Retrospective Studies
;
Severity of Illness Index
;
Treatment Outcome

Result Analysis
Print
Save
E-mail