1.Research on compaction behavior of traditional Chinese medicine compound extract powders based on unsupervised learning
Ying FANG ; Yan-long HONG ; Xiao LIN ; Lan SHEN ; Li-jie ZHAO
Acta Pharmaceutica Sinica 2025;60(2):506-513
Direct compression is an ideal method for tablet preparation, but it requires the powder's high functional properties. The functional properties of the powder during compression directly affect the quality of the tablet. 15 parameters such as Py, FES-8KN,
2.Studies on common irritant components in three different base sources of Polygonati Rhizoma.
Yu-Xin GU ; Hong-Li YU ; Min SHEN ; Xin-Zhi WANG ; Kui-Long WANG ; Jie CAO ; Qian-Lin CHEN ; Yan-Qing XU ; Chang-Li SHEN ; Hao WU
China Journal of Chinese Materia Medica 2025;50(12):3223-3231
To explore the common irritant components in different base sources of Polygonati Rhizoma(PR). A rabbit eye irritation experiment was conducted to compare the irritant effects of raw products of Polygonatum kingianum, P. officinale, and P. multiflorum. The irritant effects of different solvent extraction parts and needle crystals of PR were compared, and the irritant components were screened. The morphology and structure of the purified needle crystal of PR were observed by microscope and scanning electron microscope and characterized by X-ray diffraction. Rabbit eye irritation and mouse abdominal inflammation model were used to evaluate rabbit eye irritation scores, inflammatory mediators, inflammatory factors levels in the peritoneal exudate of mice, with the peritoneal pathological section used as indicators. The inflammatory effect of needle crystals of PR was studied, and the content of calcium oxalate in three kinds of PR was determined by HPLC. The common protein in three kinds of PR was screened and compared by double enzymatic hydrolysis in solution combined with mass spectrometry. The results showed that three kinds of PR raw products had certain irritant effects on rabbit eyes, among which P. kingianum had the strongest irritant effect. There were no obvious irritant effects in the different solvent extraction parts of P. kingianum. Compared with the blank group, the needle crystal of PR had a significant irritant effect on rabbit eyes, and the inflammatory mediators and inflammatory factors in the peritoneal exudate were significantly increased(P<0.05) in a dose-dependent manner. Meanwhile, the peritoneal tissue of mice was damaged with significant inflammatory cell infiltration after intraperitoneal injection of needle crystal, indicating that needle crystal had an inflammatory effect. Microscope and scanning electron microscope observations showed that the needle crystals of PR were slender, with a length of about 100-200 μm and sharp ends. X-ray diffraction analysis showed that the needle crystals of PR were calcium oxalate monohydrate crystals. The results of HPLC showed that the content of calcium oxalate in P. kingianum was the highest among the three kinds of PR. It was speculated that the content of needle crystal in P. kingianum was higher than that in P. officinale and P. multiflorum, which was consistent with the results of the rabbit eye irritation experiment. The results of mass spectrometry showed that ribosome inactivating protein and mannose/sialic acid binding lectin were related to inflammation and cell metabolism in all three kinds of PR. There was no obvious irritant effect in different solvent extracts of PR. The calcium oxalate needle crystal contained was the main irritant component of PR, and three kinds of PR contained common ribosome inactivating protein and mannose/sialic acid binding lectin, which may be related to the inflammatory irritant effect of PR.
Animals
;
Rabbits
;
Mice
;
Polygonatum/chemistry*
;
Drugs, Chinese Herbal/toxicity*
;
Rhizome/chemistry*
;
Male
;
Eye/drug effects*
;
Female
;
Humans
3.RNA-binding protein ELAVL1 regulates SOX4 stability and promotes hormone-sensitive prostate cancer proliferation through m6A-dependent regulation.
Sha-Sha MIN ; Zhong-Lin CAI ; Yan-Ting SHEN ; Zhong WANG
National Journal of Andrology 2025;31(9):791-799
OBJECTIVE:
To investigate the expression of RNA binding protein ELAVL1 in prostate cancer (PCa), especially hormone-sensitive prostate cancer (HSPC), and its relationship with tumor proliferation. This study further aims to reveal the molecular mechanism by which ELAVL1 promotes HSPC proliferation by stabilizing SOX4 mRNA in an m6A-dependent manner.
METHODS:
The expression of ELAVL1 in PCa tissues and its relationship with prognosis were analyzed in the Cancer Genome Atlas (TCGA) database, and the differences in HSPC and hormone-resistant prostate cancer (HRPC) were compared. And its relationship with prognosis were analyzed in the Cancer Genome Atlas (TCGA) database, and the differences in HSPC and hormone-resistant prostate cancer (HRPC) were compared. Western blot was used to detect ELAVL1 protein expression in PCa cell lines. After ELAVL1 knockdown by siRNA, cell proliferation was evaluated using CCK-8 assays, and changes in downstream target genes were detected by RT-qPCR. Tumor xenograft experiments in nude mice were performed to further assess the impact of ELAVL1 on tumor growth. The interaction between ELAVL1 and SOX4 mRNA was verified by RIP-seq. And the mRNA and protein levels of SOX4 after knockdown of ELAVL1 were detected by RT-qPCR and Western blot, respectively. CCK-8 was used to evaluate the effect of SOX4 knockdown on cell proliferation. MeRIP-qPCR was used to detect the m6A modification level of SOX4 and the effect of knocking down METTL3. RNA pull-down experiments verified the interaction between SOX4 RNA fragments and ELAVL1 protein. RNA stability experiments evaluated the effect of ELAVL1 knockdown on SOX4 mRNA stability.
RESULTS:
The expression of ELAVL1 in PCa cells was higher than that in normal prostate epithelial cells. The prognosis of patients with high expression of ELAVL1 was significantly worse than that of patients with low expression. In the GSE32269 dataset, the expression level of ELAVL1 in HSPC was significantly higher than that in HRPC. After knocking down of ELAVL1 in LNCaP and VCaP cells, CCK-8 experiments showed that the cell proliferation ability was significantly affected after knocking down ELAVL1, and overexpressed ELAVL1 promoted the proliferation of HSPC cells. The results of in vivo studies showed that knockdown of ELAVL1 significantly inhibited the tumorigenic capacity of LNCaP cells and resulted in a marked reduction in xenograft tumor mass. The levels of SOX4 mRNA and protein in LNCaP and VCaP cells were significantly higher than those in normal prostate epithelial cells RWPE-1. RIP-qPCR confirmed the interaction between ELAVL1 protein and SOX4 mRNA. After knocking down of ELAVL1, the expression levels of SOX4 mRNA and protein were significantly decreased. After knocking down of SOX4, the proliferation ability of LNCaP and VCaP cells was significantly inhibited.
CONCLUSION
ELAVL1 is highly expressed in HSPC. High expression of ELAVL1 is associated with the proliferation of HSPC. SOX4 is a downstream molecule of ELAVL1 which promotes the proliferation of HSPC. ELAVL1 enhances the stability of SOX4 mRNA through an m6A-dependent mechanism.
Male
;
Humans
;
SOXC Transcription Factors/genetics*
;
ELAV-Like Protein 1/metabolism*
;
Cell Proliferation
;
Prostatic Neoplasms/genetics*
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Mice
;
Gene Expression Regulation, Neoplastic
;
RNA, Messenger/metabolism*
;
Prognosis
4.Clinical Application and Pharmacological Mechanism of Sishenwan in Treatment of Ulcerative Colitis: A Review
Keqiu YAN ; Xiaoyu ZHANG ; Sifeng JIA ; Yuyu DUAN ; Zixing QIAN ; Yifan CAI ; Junyi SHEN ; Wenjie XIAO ; Xinkun BAO ; Guangjun SUN ; Aizhen LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):261-270
Ulcerative colitis (UC), a chronic, non-specific inflammatory bowel disease with typical symptoms such as abdominal pain, diarrhea, and bloody stools, demonstrates a high relapse rate and difficulty in curing. Sishenwan, first recorded in Internal Medicine Abstract (Nei Ke Zhai Yao), are a classic prescription for treating diarrhea caused by deficiency of the spleen and kidney Yang. The core therapeutic principle of Sishenwan is warming and tonifying the spleen and kidney, and astringing the intestine and stopping diarrhea. In recent years, Sishenwan have demonstrated distinct advantages in the clinical treatment of UC. The pathogenesis of UC involves multiple factors, including immune dysregulation and gut microbiota imbalance. Although Western medicine is effective in the short term, its side effects, high relapse rate, and resistance associated with long-term use pose substantial challenges. Sishenwan have shown excellent clinical outcomes in the treatment of UC due to deficiency of the spleen and kidney Yang. Modern clinical studies indicate that Sishenwan, used alone or in combination with Western medicine or other Chinese medicine compound prescriptions, significantly improve the clinical efficacy in treating UC due to deficiency of the spleen and kidney Yang. Sishenwan effectively alleviate core symptoms such as mucus, pus, and blood in stools, and persistent abdominal pain, reduce Mayo scores and the relapse rate, and improve patients' quality of life. Research on the material basis reveals that Sishenwan contain multiple active ingredients such as psoralen, isopsoralen, and evodiamine. Mechanism studies indicate that Sishenwan inhibit the inflammatory cascade reactions by regulating the signal network through multiple targets. Sishenwan regulate cellular immunity and restore intestinal immune homeostasis. At the microecological level, Sishenwan promote the intestinal barrier repair through the "microbiota-metabolism-immunity" axis. The current research still needs to be deepened in aspects such as the mining of specific biomarkers for syndromes and the exploration of the collaborative mechanism of traditional Chinese and Western medicine. In the future, a full-chain system covering syndrome differentiation, targeting, and monitoring needs to be constructed for promoting the paradigm transformation of Sishenwan into precision drugs. This review systematically explains the treatment mechanism of Sishenwan regarding the combination of disease and syndrome and its multi-target regulatory characteristics, providing a theoretical basis and transformation direction for the treatment of UC with integrated traditional Chinese and Western medicine.
5.Clinical Application and Pharmacological Mechanism of Sishenwan in Treatment of Ulcerative Colitis: A Review
Keqiu YAN ; Xiaoyu ZHANG ; Sifeng JIA ; Yuyu DUAN ; Zixing QIAN ; Yifan CAI ; Junyi SHEN ; Wenjie XIAO ; Xinkun BAO ; Guangjun SUN ; Aizhen LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):261-270
Ulcerative colitis (UC), a chronic, non-specific inflammatory bowel disease with typical symptoms such as abdominal pain, diarrhea, and bloody stools, demonstrates a high relapse rate and difficulty in curing. Sishenwan, first recorded in Internal Medicine Abstract (Nei Ke Zhai Yao), are a classic prescription for treating diarrhea caused by deficiency of the spleen and kidney Yang. The core therapeutic principle of Sishenwan is warming and tonifying the spleen and kidney, and astringing the intestine and stopping diarrhea. In recent years, Sishenwan have demonstrated distinct advantages in the clinical treatment of UC. The pathogenesis of UC involves multiple factors, including immune dysregulation and gut microbiota imbalance. Although Western medicine is effective in the short term, its side effects, high relapse rate, and resistance associated with long-term use pose substantial challenges. Sishenwan have shown excellent clinical outcomes in the treatment of UC due to deficiency of the spleen and kidney Yang. Modern clinical studies indicate that Sishenwan, used alone or in combination with Western medicine or other Chinese medicine compound prescriptions, significantly improve the clinical efficacy in treating UC due to deficiency of the spleen and kidney Yang. Sishenwan effectively alleviate core symptoms such as mucus, pus, and blood in stools, and persistent abdominal pain, reduce Mayo scores and the relapse rate, and improve patients' quality of life. Research on the material basis reveals that Sishenwan contain multiple active ingredients such as psoralen, isopsoralen, and evodiamine. Mechanism studies indicate that Sishenwan inhibit the inflammatory cascade reactions by regulating the signal network through multiple targets. Sishenwan regulate cellular immunity and restore intestinal immune homeostasis. At the microecological level, Sishenwan promote the intestinal barrier repair through the "microbiota-metabolism-immunity" axis. The current research still needs to be deepened in aspects such as the mining of specific biomarkers for syndromes and the exploration of the collaborative mechanism of traditional Chinese and Western medicine. In the future, a full-chain system covering syndrome differentiation, targeting, and monitoring needs to be constructed for promoting the paradigm transformation of Sishenwan into precision drugs. This review systematically explains the treatment mechanism of Sishenwan regarding the combination of disease and syndrome and its multi-target regulatory characteristics, providing a theoretical basis and transformation direction for the treatment of UC with integrated traditional Chinese and Western medicine.
6.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
7.Comparison on odor components before and after processing of Cervi Cornu Pantotrichum based on electronic nose, HS-GC-MS, and odor activity value.
Xiao-Yu YAO ; Ke SHEN ; Di WU ; Xiao-Fei SUN ; Chun-Qin MAO ; Li FU ; Xiao-Yan WANG ; Hui XIE ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(2):421-431
Processing for deodorization is widely used in the production of animal-derived Chinese medicinal materials. In this study, Heracles Neo ultra-fast gas-phase electronic nose combined with chemometrics was employed to analyze the overall odor difference of Cervi Cornu Pantotrichum(focusing on that derived from Cervus nippon Temminck in this study) before and after processing. The results showed that the electronic nose effectively distinguished between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. HS-GC-MS was used to identify and quantify the volatile components in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum, and 35 and 37 volatile components were detected in the medicinal materials and decoction pieces, respectively. The medicinal materials and decoction pieces contained 28 common volatile components contributing to the odor of Cervi Cornu Pantotrichum. The odor activity value(OAV) of each volatile component was calculated based on the olfactory threshold and relative content. The results showed that there were 17 key odor substances such as isovaleraldehyde, 2-methylbutanal, isobutyraldehyde, hexanal, and methanethiol in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. All of them had bad odor and were the main source of the odor of Cervi Cornu Pantotrichum. The results of principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) showed that there were significant differences in volatile components between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. Based on the thresholds of P<0.05 and Variable Importance in Projection(VIP)>1, 21 differential volatile odor components were screened out. Among them, isopentanol, isovaleraldehyde, 2-methylbutanal, n-nonanal, and dimethylamine were the key differential odor compounds between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. The odor compounds and their relative content reduced, and some flavor substances such as esters were produced after processing with wine, which was the main reason for the reduction of the odor after processing of Cervi Cornu Pantotrichum.
Odorants/analysis*
;
Electronic Nose
;
Gas Chromatography-Mass Spectrometry/methods*
;
Animals
;
Volatile Organic Compounds/analysis*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
8.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
9.Jiawei Xiaoyao Pills improves depression-like behavior in rats by regulating neurotransmitters, inhibiting inflammation and oxidation and modulating intestinal flora.
Ying LIU ; Borui LI ; Yongcai LI ; Lubo CHANG ; Jiao WANG ; Lin YANG ; Yonggang YAN ; Kai QV ; Jiping LIU ; Gang ZHANG ; Xia SHEN
Journal of Southern Medical University 2025;45(2):347-358
OBJECTIVES:
To explore the bioactive components in Jiawei Xiaoyao Pills (JWXYP) and their mechanisms for alleviating depression-like behaviors.
METHODS:
The active compounds, key targets, and pathways of JWXYP were identified using TCMSP and TCMIP databases. Thirty-six SD rats were randomized equally into 6 groups including a control group and 5 chronic unpredictable mild stress (CUMS)-induced depression groups. After modeling, the 5 model groups were treated with daily gavage of normal saline, 1.8 mg/kg fluoxetine hydrochloride (positive control drug), or JWXYP at 1.44, 2.88, and 4.32 g/kg. The depression-like behaviors of the rats were evaluated using behavioral tests, and pathological changes in the liver and hippocampus were examined with HE staining. The biochemical indicators in the serum and brain tissues were detected using ELISA. Serum metabolomics analysis was performed to identify the differential metabolites using OPLS-DA, and gut microbiota changes were analyzed using 16S rDNA sequencing.
RESULTS:
Network pharmacology revealed that menthone and paeonol in JWXYP were capable of penetrating the blood-brain barrier to regulate inflammatory pathways and protect the nervous system. In the rat models subjected to CUMS, treatment with JWXYP significantly improved body weight loss, sucrose preference and open field activities, reduced liver inflammation, alleviated structural changes in the hippocampal neurons, decreased serum levels of TNF‑α, IL-1β, IL-6 and LBP, and increased 5-HT and VIP concentrations in the serum and brain tissue, and these effects were the most pronounced in the high-dose group. Metabolomics analysis showed changes in such metabolites as indole-3-acetamide and acetyl-L-carnitine in JWXYP-treated rats, involving the pathways for bile acid biosynthesis and amino acid metabolism. 16S rDNA analysis demonstrated increased gut microbiota diversity and increased abundance of Lactobacillus species in JWXYP-treated rats.
CONCLUSIONS
JWXYP alleviates depression-like symptoms in rats by regulating the neurotransmitters, inhibiting inflammation and oxidation, and modulating gut microbiota.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Neurotransmitter Agents/metabolism*
;
Rats
;
Inflammation
;
Male
;
Hippocampus
;
Behavior, Animal/drug effects*
10.Three-dimensional Heterogeneity and Intrinsic Plasticity of the Projection from the Cerebellar Interposed Nucleus to the Ventral Tegmental Area.
Chen WANG ; Si-Yu WANG ; Kuang-Yi MA ; Zhao-Xiang WANG ; Fang-Xiao XU ; Zhi-Ying WU ; Yan GU ; Wei CHEN ; Ying SHEN ; Li-Da SU ; Lin ZHOU
Neuroscience Bulletin 2025;41(1):159-164

Result Analysis
Print
Save
E-mail