1.Efficacy Connotation and Mechanisms of Shudi Qiangjin Pills Against Steroid-induced Osteonecrosis of Femoral Head Based on "Disease-Syndrome-Formula" Association Network
Zhijian CHEN ; Suya ZHANG ; Longlong DING ; Guixin ZHANG ; Bo LIU ; Baohong MI ; Yanqiong ZHANG ; Na LIN ; Weiheng CHEN ; Chunzhu GONG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):88-99
ObjectiveTo elucidate the efficacy connotation of Shudi Qiangjin pills (SQP) against liver and kidney deficiency in steroid-induced osteonecrosis of femoral head (SONFH) from the perspective of the "disease-syndrome-formula" association and to clarify the underlying mechanisms based on in vivo and in vitro experiment validation. MethodsThe chemical components and the corresponding putative targets of SQP were collected from the Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP) v2.0, the Encyclopedia of Traditional Chinese Medicine (ETCM) v2.0, and HERB databases. The SONFH-related genes were identified based on the differential expression profiles of peripheral blood of patients with SONFH compared to the healthy volunteers, and the disease phenotype-related targets were collected from the TCMIP v2.0 database. Then, the interaction network of "SONFH-related genes and candidate targets of SQP" was constructed based on "gene-gene interaction information", and the major network targets were screened by calculating the topological characteristic values of the network followed by the functional mining according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the SoFDA database. After that, the SONFH rat model was prepared by lipopolysaccharide combined with methylprednisolone injection, and 2.5, 5, 7.5 g·kg-1 SQP (once per day, equivalent to 1, 2, and 3 times the clinical equivalent dose, respectively) or 7.3×10-3 g·kg-1 of alendronate sodium (ALS, once per week, equivalent to the clinical equivalent dose) was given for 8 weeks. The effect characteristics of SQP and ALS in the treatment of SONFH were evaluated by micro-computed tomography scanning, hematoxylin and eosin staining, alkaline phosphatase (ALP) staining, immunohistochemical staining, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)staining, and a comparative efficacy analysis was conducted with ALS. In addition, SONFH cell models were prepared by dexamethasone stimulation of osteoblasts, and the intervention was carried out with the medicated serum of SQP at the aforementioned three doses. Cell counting kit-8, ALP staining, ALP activity assay, alizarin red staining, and flow cytometry were employed to investigate the regulatory effect of SQP on osteoblasts. The expression levels of osteogenesis-related proteins and key factors of the target signaling axis were detected by quantitative real-time polymerase chain reaction and Western blot. ResultsThe network analysis results demonstrated that the candidate targets of SQP primarily exerted their therapeutic effects through key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt), lipid metabolism and atherosclerosis, prolactin, chemokines, and neurotrophic factors pathways. These pathways were significantly involved in critical biological processes such as muscle and bone metabolism and the regulation of the "neuro-endocrine-immune" network, thereby addressing both modern medical symptoms (e.g., delayed skeletal maturation and recurrent fractures) and traditional Chinese medicine (TCM) symptoms (e.g., fatigue, aversion to cold, cold limbs, and pain in the limbs and joints in patients with SONFH characterized by liver and kidney deficiency syndrome. Among these pathways, the PI3K/Akt signaling pathway exhibited the highest degree of enrichment. The in vivo experimental results demonstrated that starting from the 4th week after modeling, the modeling group exhibited a significant reduction in body weight compared to the control group (P<0.05). After six weeks of treatment, all dosage groups of SQP showed significantly higher body weights compared to the model group (P<0.01). Compared with the normal group, the model group exhibited significant decreases in bone mineral density (BMD), bone volume fraction (BV/TV), trabecular number (Tb.N), osteocalcin (OCN), alkaline phosphatase (ALP) levels in femoral head tissue, and serum bone-specific alkaline phosphatase (BALP) (P<0.01), along with significant increases in trabecular separation (Tb.Sp), empty lacunae rate in tissue, and apoptosis rate (P<0.01). In comparison to the model group, the SQP intervention groups showed significant improvements in BMD, BV/TV and Tb.N (P<0.01), significant reductions in Tb.Sp, empty lacunae rate and apoptosis rate (P<0.05), and significant increases in protein levels of OCN and ALP as well as BALP content (P<0.05). The in vitro experimental results revealed that all dosage groups of SQP medicated serum showed no toxic effects on osteoblast. Compared with the normal group, the model group displayed significant suppression of osteoblast proliferation activity, ALP activity, and calcified nodule formation rate (P<0.01), significant decreases in mRNA transcription levels of OCN and Runt-related transcription factor 2 (RUNX2) (P<0.01), significant reductions in protein content of osteopontin (OPN), typeⅠ collagen (ColⅠ)A1, B-cell lymphoma-2 (Bcl-2), PI3K, and phosphorylated (p)-Akt (P<0.01), and a significant increase in apoptosis rate (P<0.01). Compared with the model group, the SQP medicated serum intervention groups exhibited significant increases in proliferation activity, ALP activity, calcified nodule formation rate, mRNA transcription levels of OCN and RUNX2, and protein content of OPN, ColⅠA1, Bcl-2, PI3K, and p-Akt (P<0.05), along with a significant decrease in apoptosis rate (P<0.01). ConclusionSQP can effectively reduce the disease severity of SONFH with liver and kidney deficiency syndrome and improve bone microstructure, with the therapeutic effects exhibiting a dose-dependent manner. The mechanism may be related to its regulation of key processes such as muscle and bone metabolism and the correction of imbalances in the "neuro-endocrine-immune" network, thereby promoting osteoblast differentiation and inhibiting osteoblast apoptosis. The PI3K/Akt signaling axis is likely one of the key pathways through which this formula exerts its effects.
2.Guidelines for Establishing Animal Models of Rheumatoid Arthritis with Cold-dampness Obstruction Syndrome and Dampness-heat Obstruction Syndrome
Na LIN ; Yanqiong ZHANG ; Changhong XIAO ; Shenghao TU ; Jianning SUN ; Shijun XU ; Representation Preparation GROUP
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):47-54
Rheumatoid arthritis belongs to arthralgia syndrome in the theory of traditional Chinese medicine, and cold-dampness obstruction syndrome and dampness-heat obstruction syndrome are core syndromes and main syndrome differentiation types of this disease. Fine therapeutic effects have been obtained in the long-term clinical practice of many famous traditional Chinese medicine practitioners following the syndrome differentiation and treatment based on the guiding principles of cold and heat. To adapt to the clinical diagnosis practice of combining disease differentiation and syndrome differentiation, and to better carry out basic research on integrated Chinese and Western medicine and preclinical study on new traditional Chinese medicines, Guidelines for Establishing Animal Models of Rheumatoid Arthritis with Cold-Dampness Obstruction Syndrome and Dampness-Heat Obstruction Syndrome (hereinafter referred to as the Guidelines) were compiled by our research group, in cooperation with the renowned experts in research fields including traditional Chinese medicine, clinical medicine, zoology and evidence-based medicine, which provide a meaningful reference for scientific research, teaching and clinical applications. The compilation process of the Guidelines was guided by the theory of disease and syndrome integration and the principles of "evidence takes the main place, consensus plays an auxiliary role, and experience serves as the reference". Based on the comprehensive evaluation of pathogenesis homology, behavioral phenotypic consistency, and drug treatment predictability compared between animal models and human diseases, by the nominal group method, "recommendations" were formed for recommendations supported by evidence, and "consensus recommendations" were formed for recommendations not supported by evidence. Guidelines were formed involving content such as animal types, arthritis modeling methods, external stimulation conditions, and modeling assessment indicators during the establishment of the animal models of rheumatoid arthritis with cold-dampness obstruction syndrome and dampness-heat obstruction syndrome. The Guidelines are applicable for the disease and syndrome research on rheumatoid arthritis, investigation of therapeutic mechanisms, and development of new traditional Chinese medicine. The Guidelines also provide a reference for the establishment of guidelines on other types of diseases and syndromes combined with animal models to further promote the modernization of traditional Chinese medicine research and its integration with international academic development.
3.Editorial Explanation of Guidelines for Establishing Animal Models of Rheumatoid Arthritis with Cold-dampness Obstruction Syndrome and Dampness-heat Obstruction Syndrome
Na LIN ; Yanqiong ZHANG ; Changhong XIAO ; Shenghao TU ; Jianning SUN ; Shijun XU ; Xia MAO ; Representation Preparation GROUP
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):55-59
The Guidelines for Establishing Animal Models of Rheumatoid Arthritis with Cold-dampness Obstruction Syndrome and Dampness-heat Obstruction Syndrome (hereinafter referred to as the Guidelines) (No. T/CACM1567-2024) was published by Chinese Association of Chinese Medicine on January 11, 2024. To assist researchers and medical workers in understanding and applying the Guidelines more accurately, and also to provide reference and assistance for the establishment of guidelines on other types of diseases and syndromes combined with animal models, this paper made a declaration of the workflow, technological links, development references, promotion of its application and after-effect evaluation of the Guidelines that has been made according to the requirements of "Draft Group Standard of the Standardization Office of the Chinese Association of Traditional Chinese Medicine".
4.Exercise Ameliorates Chronic Restraint Stress-induced Anxiety via PVN CRH Neurons
Jing CHEN ; Cong-Cong CHEN ; Kai-Na ZHANG ; Yu-Lin LAI ; Yang ZOU
Progress in Biochemistry and Biophysics 2025;52(2):501-512
ObjectiveTo investigate the role of paraventricular nucleus (PVN) corticotropin releasing hormone (CRH) neurons in chronic restraint stress (CRS)-induced anxiety-like behavior. And whether exercise relieves chronic restraint stress-induced anxiety through PVN CRH neurons. MethodsTwenty 8-week-old male C57BL/6J mice were randomly divided into control (Ctrl) group and chronic restraint stress (CRS) group. The open field test (OFT) and elevated plus maze (EPM) were used to evaluate anxiety-like behavior of the mice. Food intake was recorded after CRS. Immunofluorescence staining was used to label the expression of c-Fos expression in PVN and calculate the co-expression of c-Fos and CRH neurons. We used chemogenetic activation of PVN CRH neurons to observed the anxiety-like behavior. 8-week treadmill training (10-16 m/min, 60 min/d, 6 d/week) were used to explore the role of exercise in ameliorating CRS-induced anxiety behavior and how PVN CRH neurons involved in it. ResultsCompared with Ctrl group, CRS group exhibited significant anxiety-like behavior. In OFT, the mice in CRS groups spent less time in center area (P<0.001). In EPM, the time in open arm in CRS group were significantly decreased (P<0.001). Besides, food intake was also suppressed in CRS group compared with Ctrl group (P<0.05). Compared with Ctrl group, CRS significantly increase c-Fos expression in PVN and most of CRH neurons co-express c-Fos (P<0.001). Chemogenetic activation of PVN CRH neurons induced anxiety-like behavior (P<0.05) and inhibited feeding behavior (P<0.01). Exercise relieves chronic restraint stress-induced anxiety (P<0.001) and relieved the anorexia caused by chronic restraint stress (P<0.05). Aerobic exercise inhibited the CRS labeled c-Fos in PVN CRH neurons (P<0.001). Furthermore, ablation of PVN CRH neurons attenuated CRS induced anxiety-like behavior. ConclusionCRS activated PVN CRH neurons, induced anxiety-like behavior and reduced food intake. 8-week exercise attenuated CRS-induced anxiety-like behavior through inhibiting PVN CRH neuron. Ablation of CRH PVN neurons ameliorated CRS-induced anxiety-like behavior. These finding reveals a potential neural mechanism of exercise-relieving CRS-induced anxiety-like behavior. This provides a new idea and theoretical basis for the treatment of anxiety and related mental disorders.
5.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
6.Interventional Effect and Mechanisms of Renqing Mangjue on MNNG-induced Malignant Transformation of Gastric Mucosal Epithelial Cells
Peiping CHEN ; Fengyu HUANG ; Xinzhuo ZHANG ; Xiangying KONG ; Ziqing XIAO ; Yanxi LI ; Xiaohui SU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):69-77
ObjectiveThis study aimed to investigate the intervention effect of Renqing Mangjue on the malignant transformation of gastric mucosal epithelial cells induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and to explore its molecular mechanism in preventing precancerous lesions of gastric cancer based on the cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway. MethodsHuman gastric mucosal epithelial cells (GES-1) were initially induced by MNNG to establish a precancerous cell model (MC cells). The effective concentration of MNNG for inducing malignant transformation in GES-1 cells was screened using the cell proliferation activity decection (CCK-8) assay, and the effective concentration of Renqing Mangjue for inhibiting the proliferation of transformed GES-1 cells was also determined. GES-1 cells were divided into a blank control group, a model group, and treatment groups with Renqing Mangjue at concentrations of 1, 3, 10, and 30 mg·L-1. Furthermore, the effects of Renqing Mangjue on the migratory ability and epithelial-mesenchymal transition (EMT) characteristics of GES-1 malignant transformed cells were evaluated using Transwell migration assays, wound healing assays, and real-time quantitative reverse transcription polymerase chain reaction (Real-time PCR). Additionally, candidate chemical components and target sites of Renqing Mangjue were obtained from the TCMIP v2.0 database, and disease targets at various stages of gastric cancer precursors were sourced from the Gene Expression Omnibus (GEO) database. Pathway enrichment analysis was performed using the Metascape database to predict the potential mechanisms of action of Renqing Mangjue. Finally, the protective mechanism of Renqing Mangjue against gastric cancer precursors was validated through Western blot analysis. ResultsAt a concentration of 20 μmol·L-1, MNNG exhibited an inhibition rate of approximately 50% on GES-1 cells (P<0.01), and at this concentration, the GES-1 cells displayed biological characteristics indicative of malignant transformation. In contrast, Renqing Mangjue had no significant effect on the proliferation of normal GES-1 cells, but significantly inhibited the proliferation of MC cells (P<0.01) and markedly reduced their migratory capacity (P<0.01). Moreover, it also increased the mRNA expression level of E-cadherin during the EMT process (P<0.05), while inhibiting the expression of both N-cadherin and the transcription factor Snail mRNA (P<0.05, P<0.01). Network predictions suggested that Renqing Mangjue may prevent gastric cancer precursors through modulating the cGMP/PKG and MAPK/ERK signaling pathways. Furthermore, Western blot results indicated that Renqing Mangjue upregulated the expression of PKG and NPRB (B-type natriuretic peptide receptor) proteins in the cGMP/PKG pathway (P<0.01), while downregulating the expression of the downstream proteins MEK and ERK (P<0.05, P<0.01). ConclusionIn summary, Renqing Mangjue can prevent gastric cancer precursors by inhibiting the proliferation and migration of malignant transformed GES-1 cells, thereby delaying the EMT process. The underlying mechanisms may be related to the activation of the cGMP/PKG pathway and the inhibition of the MEK/ERK signaling pathway.
7.Investigation on the mechanisms of Colquhounia Root Tablets in reversing vascular endothelial cell dysfunction of rheumatoid arthritis via modulating NOD2/SMAD3/VEGFA signaling axis
Bing-bing CAI ; Ya-wen CHEN ; Tao LI ; Yuan ZENG ; Yan-qiong ZHANG ; Na LIN ; Xia MAO ; Ya LIN
Acta Pharmaceutica Sinica 2025;60(2):397-407
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, joint destruction, and functional impairment. Angiogenesis plays a key role in the pathological progression of RA with dysfunction of endothelial cells to promote synovial inflammation, sustain pannus formation, subsequently leading to joint damage. Colquhounia Root Tablets (CRT), a Chinese patent drug, has shown a satisfying clinical efficacy in treating RA, while the underlying mechanism by which CRT inhibits RA-associated angiogenesis remains unclear. In this study, we applied a research approach combining transcriptomic data analysis, bio-network mapping, and
8.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
9.Oxylipidomics Combined with Transcriptomics Reveals Mechanism of Jianpi Huogu Prescription in Treating Steroid-induced Osteonecrosis of Femoral Head in Rats
Lili WANG ; Qun LI ; Zhixing HU ; Qianqian YAN ; Liting XU ; Xiaoxiao WANG ; Chunyan ZHU ; Yanqiong ZHANG ; Weiheng CHEN ; Haijun HE ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):190-199
ObjectiveTo unveil the mechanism of Jianpi Huogu prescription (JPHGP) in ameliorating the dyslipidemia of steroid-induced osteonecrosis of the femur head (SONFH) by oxylipidomics combined with transcriptomics. MethodsSixty SD rats were assigned into normal, model, low-, medium-, and high-dose (2.5, 5, 10 g·kg-1, respectively) JPHGP, and Jiangushengwan (1.53 g·kg-1) groups. Lipopolysaccharide was injected into the tail vein at a dose of 20 μg·kg-1 on days 1 and 2, and methylprednisolone sodium succinate was injected at a dose of 40 mg·kg-1 into the buttock muscle on days 3 to 5. The normal group received an equal volume of normal saline. Drug administration by gavage began 4 weeks after the last injection, and samples were taken after administration for 8 weeks. Hematoxylin-eosin staining was conducted to reveal the histopathological changes of the femoral head, and the number of adipocytes, the rate of empty bone lacunae, and the trabecular area were calculated. Micro-computed tomography was used for revealing the histological and histomorphometrical changes of the femoral head. Enzyme-linked immunosorbent assay was employed to measure the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). At the same time, the femoral head was collected for oxylipidomic and transcriptomic detection. The differential metabolites and differential genes were enriched and analyzed, and the target genes regulating lipid metabolism were predicted. The predicted target proteins were further verified by molecular docking, immunohistochemistry, and Western blot. ResultsCompared with the normal group, the model group showcased thinning of the femoral head, trabecular fracture, karyopyknosis, subchondral cystic degeneration, increases in the number of adipocytes and the rate of empty bone lacunae (P<0.01), a reduction in the trabecular area (P<0.01), decreases in BMD, Tb.Th, Tb.N, and BV/TV, and increases in Tb.Sp and BS/BV (P<0.01). Compared with the model group, the JPHGP groups showed no obvious thinning of the femoral head or subchondroidal cystic degeneration. The high- and medium-dose JPHGP groups presented declines in the number of adipocytes and the rate of empty bone lacunae, an increase in the trabecular area (P<0.05, P<0.01), rises in BMD, Tb.Th, Tb.N, and BV/TV, and decreases in Tb.Sp and BS/BV (P<0.05, P<0.01). Compared with the normal group, the model group showcased raised serum levels of TG, TC, LDL, and ApoB and lowered serum levels of HDL and ApoA1 (P<0.01). Compared with the model group, the JPHGP groups had lowered serum levels of TG, TC, LDL, and ApoB (P<0.05, P<0.01) and a risen serum level of ApoA1 (P<0.05, P<0.01). Moreover, the serum level of HDL in the high-dose JPHGP group increased (P<0.01). A total of 19 different metabolites of disease set and drug set were screened out by oxylipidomics of the femoral head, and 119 core genes with restored expression were detected by transcriptomics. The enriched pathways were mainly concentrated in inflammation, lipids, apoptosis, and osteoclast differentiation. Molecular docking, immunohistochemistry, and Western blot results showed that compared with the normal group, the model group displayed increased content of 5-lipoxygenase (5-LO) and peroxisome proliferator-activated receptor γ (PPARγ) in the femoral head (P<0.01). Compared with the model group, medium- and high-dose JPHGP reduced the content of 5-LO and PPARγ (P<0.05, P<0.01). ConclusionJPHGP can restore the levels of oxidized lipid metabolites by regulating the 5-LO-PPARγ axis to treat SONFH in rats. Relevant studies provide experimental evidence for the efficacy mechanism of JPHGP in the treatment of SONFH.
10.Research progress of the interaction between RAAS and clock genes in cardiovascular diseases.
Rui-Ling MA ; Yi-Yuan WANG ; Yu-Shun KOU ; Lu-Fan SHEN ; Hong WANG ; Ling-Na ZHANG ; Jiao TIAN ; Lin YI
Acta Physiologica Sinica 2025;77(4):669-677
The renin-angiotensin-aldosterone system (RAAS) is crucial for regulating blood pressure and maintaining fluid balance, while clock genes are essential for sustaining biological rhythms and regulating metabolism. There exists a complex interplay between RAAS and clock genes that may significantly contribute to the development of various cardiovascular and metabolic diseases. Although current literature has identified correlations between these two systems, the specific mechanisms of their interaction remain unclear. Moreover, the interaction patterns under different physiological and pathological conditions need further investigation. This review summarizes the synergistic roles of the RAAS and clock genes in cardiovascular diseases, explores their molecular mechanisms and pathophysiological connections, discusses the application of chronotherapy, and highlights potential future research directions, aiming to provide novel insights for the prevention and treatment of related diseases.
Humans
;
Renin-Angiotensin System/genetics*
;
Cardiovascular Diseases/genetics*
;
CLOCK Proteins/physiology*
;
Animals

Result Analysis
Print
Save
E-mail