1.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice
Qi ZHENG ; Yi LU ; Donghua YU ; Liangyou ZHAO ; Chunsheng LIN ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):40-50
ObjectiveTo investigate the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) in mice by Data-Independent Acquisition (DIA) proteomics. MethodsThe α-Synuclein (α-Syn) transgenic PD mice were selected as suitable models for PD, and they were randomly assigned into PD, ASH (61.25 mg·kg-1), and Madopar (97.5 mg·kg-1) groups. Male C57BL/6 mice of the same age were selected as the control group, with eight mice in each group. Mice were administrated with corresponding drugs by gavage once a day for 20 days. The pole climbing time and the number of autonomic activities were recorded to evaluate the exercise ability of mice. Hematoxylin-eosin staining was employed to observe neuronal changes in the substantia nigra of PD mice. Immunohistochemistry (IHC) was employed to measure the tyrosine hydroxylase (TH) activity in the substantia nigra and assess the areal density of α-Syn in the striatum. DIA proteomics was used to compare protein expression in the substantia nigra between groups. IHC was utilized to validate key differentially expressed proteins, including Lactotransferrin, Notch2, Ndrg2, and TMEM 166. The cell counting kit-8 (CCK-8) method was used to investigate the effect of ASH on the viability of PD cells with overexpression of α-Syn. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the protein and mRNA levels of Lactotransferrin, Notch2, Ndrg2, and TMEM 166 in PD cells. ResultsCompared with the control group, the model group showed prolonged pole climbing time, diminished coordination ability, reduced autonomic activities (P<0.01), and reduced swelling neurons. Compared with the model group, ASH and Madopar reduced the climbing time, increased autonomic activities (P<0.01), and ameliorated neuronal damage. Compared with the control group, the model group showed a decrease in TH activity in the substantia nigra and an increase in α-Syn accumulation in the striatum (P<0.01). Compared with the model group, the ASH group showed an increase in TH activity and a reduction in α-Syn accumulation (P<0.05). DIA proteomics revealed a total of 464 differentially expressed proteins in the model group compared with the control group, with 323 proteins being up-regulated and 141 down-regulated. A total of 262 differentially expressed proteins were screened in the ASH group compared with the model group, including 85 proteins being up-regulated and 177 down-regulated. Kyoto encylopedia of genes and genomes (KEGG) pathway analysis indicated that ASH primarily regulated the Notch signaling pathway. The model group showed up-regulation in protein levels of Notch2, Ndrg2, and TMEM 166 and down-regulation in the protein level of Lactotransferrin compared with the control group (P<0.01). Compared with the model group, ASH down-regulated the protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.05) while up-regulating the protein level of Lactotransferrin (P<0.01). The IHC results corroborated the proteomics findings. The cell experiment results showed that compared with the control group, the modeling up-regulated the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while down-regulating the mRNA and protein levels of Lactotransferrin (P<0.01). Compared with the model group, ASH reduced the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while increasing the mRNA and protein levels of Lactotransferrin (P<0.05, P<0.01). ConclusionASH may Synergistically inhibit the Notch signaling pathway and mitigate neuronal damage by down-regulating the expression of Notch2 and Ndrg2. Additionally, by up-regulating the expression of Lactotransferrin and down-regulating the expression of TMEM166, ASH can address brain iron accumulation, intervene in ferroptosis, inhibit mitophagy, and mitigate reactive oxygen species damage, thereby protecting nerve cells and contributing to the treatment of PD.
2.Prevalence of steatotic liver disease and associated fibrosis in the general population: An epidemiological survey: Letter to the editor on “Epidemiology of metabolic dysfunction-associated steatotic liver disease”
Lin GUAN ; Xinhe ZHANG ; Shanghao LIU ; Xiaolong QI ; Yiling LI
Clinical and Molecular Hepatology 2025;31(2):e145-e148
3.Diarrhea caused by foodborne Salmonella infection in children aged 0-6 years in Guizhou Province from 2016 to 2023
LIAO Hongxia, WANG Yafang, LIU Lin, ZHANG Lili, YANG Qi, LI Lei
Chinese Journal of School Health 2025;46(5):732-736
Objective:
To analyze the epidemilogical and seasonal characteristics of foodborne Salmonella-associated diarrhea among children aged 0-6 years in Guizhou Province from 2016 to 2023, so as to provide a basis for the prevention and control of foodborne diseases.
Methods:
Data were extracted from the Foodborne Disease Survellance System for cases reported between January 1, 2016, and December 31, 2023. The incidence, seasonal characteristics, and peak periods were analyzed by the method of concentration and circular distribution.
Results:
A total of 6 434 cases of diarrhea in children aged 0-6 years were collected, and 455 cases of Salmonella were detected, with a positive detection rate of 7.07%. Salmonella typhimurium was the main serotype causing diarrhea (59.34%). The peak of the disease was from May 3 to September 30, with certain seasonal characteristics. The highest detection rate was found in children aged 1-3 years (8.66%). Among food types, the positive detection rates of Salmonella were relatively high in other foods (17.39%), fruits and their products (10.22%), infant and toddler foods (10.09%), and aquatic animals and their products (9.80%). The processing and packaging methods of food were mainly home-made (9.38%) and bulk food (7.54%).
Conclusions
The detection rate of Salmonella in children aged 0-6 years is high in Guizhou Province, with strong seasonal characteristics. The detection rates of other foods, fruits and their products, infant and toddler foods, and aquatic animals and their products are high. Enhanced pathogen surveillance for susceptible populations and high-risk foods, coupled with public health education during summer/autumn, is recommended.
4.Prevalence of steatotic liver disease and associated fibrosis in the general population: An epidemiological survey: Letter to the editor on “Epidemiology of metabolic dysfunction-associated steatotic liver disease”
Lin GUAN ; Xinhe ZHANG ; Shanghao LIU ; Xiaolong QI ; Yiling LI
Clinical and Molecular Hepatology 2025;31(2):e145-e148
5.Prevalence of steatotic liver disease and associated fibrosis in the general population: An epidemiological survey: Letter to the editor on “Epidemiology of metabolic dysfunction-associated steatotic liver disease”
Lin GUAN ; Xinhe ZHANG ; Shanghao LIU ; Xiaolong QI ; Yiling LI
Clinical and Molecular Hepatology 2025;31(2):e145-e148
6.Identification strategy of cold and hot properties of Chinese herbal medicines based on artificial intelligence and biological experiments.
Lin LIN ; Pengcheng ZHAO ; Zhao CHEN ; Bin LIU ; Yuexi WANG ; Qi GENG ; Li LI ; Yong TAN ; Xiaojuan HE ; Li LI ; Jianyu SHI ; Cheng LU
Chinese Medical Journal 2025;138(6):745-747
7.Efficacy and safety of using an enteral immunonutrition formula in the enhanced recovery after surgery protocol for Chinese patients with gastrointestinal cancers undergoing surgery: A randomized, open-label, multicenter trial (healing trial).
Jianchun YU ; Gang XIAO ; Yanbing ZHOU ; Yingjiang YE ; Han LIANG ; Guole LIN ; Qi AN ; Xiaodong LIU ; Bin LIANG ; Baogui WANG ; Weiming KANG ; Tao YU ; Yulong TIAN ; Chao WANG ; Xiaona WANG
Chinese Medical Journal 2025;138(21):2847-2849
8.Antidepressant mechanism of Baihe Dihuang Decoction based on metabolomics and network pharmacology.
Chao HU ; Hui YANG ; Hong-Qing ZHAO ; Si-Qi HUANG ; Hong-Yu LIU ; Shui-Han ZHANG ; Lin TANG
China Journal of Chinese Materia Medica 2025;50(1):10-20
The Baihe Dihuang Decoction(BDD) is a representative traditional Chinese medicine formula that has been used to treat depression. This study employed metabolomics and network pharmacology to investigate the mechanism of BDD in the treatment of depression. Fifty male Sprague-Dawley(SD) rats were randomly assigned to the normal control group, model group, fluoxetine group, and high-and low-dose BDD groups. A rat model of depression was established through chronic unpredictable mild stress(CUMS), and the behavioral changes were detected by forced swimming test and open field test. Metabolomics technology was used to analyze the metabolic profiles of serum and hippocampal tissue to screen differential metabolites and related metabolic pathways. Additionally, network pharmacology and molecular docking techniques were used to investigate the key targets and core active ingredients of BDD in improving metabolic abnormalities of depression. A "component-target-metabolite-pathway" regulatory network was constructed. BDD could significantly improve depressive-like behavior in CUMS rats and regulate 12 differential metabolites in serum and 27 differential metabolites in the hippocampus, involving tryptophan metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis, alanine, aspartate, and glutamate metabolism, tyrosine metabolism, and purine metabolism. Verbascoside, isorbascoside, and regaloside B were the key active ingredients for improving metabolic abnormalities in depression. Epidermal growth factor receptor(EGFR), protooncogene tyrosine-protein kinase(SRC), glycogen synthase kinase 3β(GSK3β), and androgen receptor(AR) were the key core targets for improving metabolic abnormalities of depression. This study offered a preliminary insight into the mechanism of BDD in alleviating metabolic abnormalities of depression through network regulation, providing valuable guidance for its clinical use and subsequent research.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Metabolomics
;
Depression/genetics*
;
Antidepressive Agents/chemistry*
;
Network Pharmacology
;
Hippocampus/drug effects*
;
Humans
;
Molecular Docking Simulation
;
Behavior, Animal/drug effects*
;
Disease Models, Animal
9.Construction and in vitro pharmacodynamic evaluation of a polydopamine nanodelivery system co-loaded with gambogic acid, Fe(Ⅲ), and glucose oxidase.
Jian LIU ; Zhi-Huai CHEN ; Xin-Qi WEI ; Ling-Ting LIN ; Wei XU
China Journal of Chinese Materia Medica 2025;50(1):111-119
Gambogic acid(GA), a caged xanthone derivative isolated from Garcinia Hanburyi, exhibits significant antitumor activity and has advanced to phase Ⅱ clinical trials for lung cancer treatment in China. However, the clinical application of GA is severely hindered by its inherent limitations, including poor water solubility, a lack of targeting specificity, and significant side effects. Novel drug delivery systems not only overcome these pharmacological deficiencies but also integrate multiple therapeutic modalities, transcending the limitations of monotherapeutic approaches. In this study, we designed a multifunctional nanodelivery platform(PDA-PEG-Fe(Ⅲ)-GOx-GA) using polydopamine(PDA) as the core material. After the modification of PDA with polyethylene glycol(PEG), Fe(Ⅲ) ions, glucose oxidase(GOx), and GA were sequentially loaded via coordination interactions, electrostatic adsorption, and hydrophobic interactions, respectively. This system demonstrated excellent physiological stability, hemocompatibility, and photothermal conversion efficiency. Notably, under dual stimuli of pH and near-infrared(NIR) irradiation, PDA-PEG-Fe(Ⅲ)-GOx-GA achieved controlled GA release, with a cumulative release rate of 58.3% at 12 h, 3.6-fold higher than that under non-stimulated conditions. Under NIR irradiation, the synergistic effects of PDA-mediated photothermal therapy, Fe(Ⅲ)-induced chemodynamic therapy, GOx-generated starvation therapy, and GA-mediated chemotherapy resulted in effective inhibition of tumor cell proliferation(91.5% inhibition rate) and induction of apoptosis(83.3% apoptosis rate). This multi-modal approach realized a comprehensive treatment strategy for lung cancer, integrating various therapeutic pathways.
Xanthones/pharmacology*
;
Humans
;
Polymers/chemistry*
;
Glucose Oxidase/pharmacology*
;
Indoles/chemistry*
;
Drug Delivery Systems
;
Drug Carriers/chemistry*
;
Nanoparticles/chemistry*
;
Cell Line, Tumor
10.Research progress on natural small molecule compound inhibitors of NLRP3 inflammasome.
Tian-Yuan ZHANG ; Xi-Yu CHEN ; Xin-Yu DUAN ; Qian-Ru ZHAO ; Lin MA ; Yi-Qi YAN ; Yu WANG ; Tao LIU ; Shao-Xia WANG
China Journal of Chinese Materia Medica 2025;50(3):644-657
In recent years, there has been a growing interest in the research on NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome inhibitors in the treatment of inflammatory diseases. The NLRP3 inflammasome is integral to the innate immune response, and its abnormal activation can lead to the release of pro-inflammatory cytokine, consequently facilitating the progression of various pathological conditions. Therefore, investigating the pharmacological inhibition pathway of the NLRP3 inflammasome represents a promising strategy for the treatment of inflammation-related diseases. Currently, the Food and Drug Administration(FDA) has not approved drugs targeting the NLRP3 inflammasome for clinical use due to concerns regarding liver toxicity and gastrointestinal side effects associated with chemical small molecule inhibitors in clinical trials. Natural small molecule compounds such as polyphenols, flavonoids, and alkaloids are ubiquitously found in animals, plants, and other natural substances exhibiting pharmacological activities. Their abundant sources, intricate and diverse structures, high biocompatibility, minimal adverse reactions, and superior biochemical potency in comparison to synthetic compounds have attracted the attention of extensive scholars. Currently, certain natural small molecule compounds have been demonstrated to impede the activation of the NLRP3 inflammasome via various action mechanisms, so they are viewed as the innovative, feasible, and minimally toxic therapeutic agents for inhibiting NLRP3 inflammasome activation in the treatment of both acute and chronic inflammatory diseases. Hence, this study systematically examined the effects and potential mechanisms of natural small molecule compounds derived from traditional Chinese medicine on the activation of NLRP3 inflammasomes at their initiation, assembly, and activation stages. The objection is to furnish theoretical support and practical guidance for the effective clinical application of these natural small molecule inhibitors.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/metabolism*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/therapeutic use*
;
Humans
;
Animals
;
Disease Models, Animal
;
Biological Products/therapeutic use*
;
Drug Discovery
;
Medicine, Chinese Traditional/methods*


Result Analysis
Print
Save
E-mail