1.Postnatal Development of Brain Natriuretic Peptide-immunoreactive Neuron in the Hypothalamus of the Rat.
Yoon Young CHUNG ; Young Wook JEONG ; Young Lan PARK ; Jong Joong KIM ; Jeong Seok MOON ; Jin FU ; Jae Wook OH
Korean Journal of Physical Anthropology 2004;17(1):1-10
Brain natriuretic peptide (BNP) is a neuropeptide, isolated from porcine brain that is homologous with atriopeptin. Magnocellular neurosecretory cells located in the paraventricular nucleus and supraoptic nucleus synthesize and secrete neurohormones. The purpose of this study was to investigate distribution of BNP immunoreactivity throughout the rat hypothalamus from the day of birth to 30 days and adult using immunoperoxidase and immunofluorescent staining. The first BNP immunoreactive neurons appeared in the paraventricular and supraoptic nucleus at P10. In adult, BNP immunoreactivity was widely distributed throughout regions of the hypothalamus including dorsomedial hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus and internal layer of median eminence. The intensity of BNP immunoreactivity was weak in almost all hypothalamic nuclei except the paraventricular and supraoptic nuclei. BNP immunoreactivity was first observed in the lateral hypothalamic area at P15. In retrochiasmatic supraoptic nucleus, BNP immunoreactivity was first observed at P20 and remarkably distributed in adult. In the present study, distinct localization of BNP immunoreactivity was in the hypothalamic cell bodies and fibers. Although the role of BNP in the brain is yet to be determined, these results indicate that BNP in the neurons of hypothalamus play important role in the regulation of a variety of neurosecretory functions as a neuromodulator during postnatal development of the hypothalamus.
Adult
;
Animals
;
Arcuate Nucleus
;
Brain*
;
Dorsomedial Hypothalamic Nucleus
;
Humans
;
Hypothalamic Area, Lateral
;
Hypothalamus*
;
Immunohistochemistry
;
Median Eminence
;
Natriuretic Peptide, Brain
;
Neurons*
;
Neuropeptides
;
Neurotransmitter Agents
;
Paraventricular Hypothalamic Nucleus
;
Parturition
;
Rats*
;
Supraoptic Nucleus
;
Ventromedial Hypothalamic Nucleus
2.Postnatal Development of Brain Natriuretic Peptide-immunoreactive Neuron in the Hypothalamus of the Rat.
Yoon Young CHUNG ; Young Wook JEONG ; Young Lan PARK ; Jong Joong KIM ; Jeong Seok MOON ; Jin FU ; Jae Wook OH
Korean Journal of Physical Anthropology 2004;17(1):1-10
Brain natriuretic peptide (BNP) is a neuropeptide, isolated from porcine brain that is homologous with atriopeptin. Magnocellular neurosecretory cells located in the paraventricular nucleus and supraoptic nucleus synthesize and secrete neurohormones. The purpose of this study was to investigate distribution of BNP immunoreactivity throughout the rat hypothalamus from the day of birth to 30 days and adult using immunoperoxidase and immunofluorescent staining. The first BNP immunoreactive neurons appeared in the paraventricular and supraoptic nucleus at P10. In adult, BNP immunoreactivity was widely distributed throughout regions of the hypothalamus including dorsomedial hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus and internal layer of median eminence. The intensity of BNP immunoreactivity was weak in almost all hypothalamic nuclei except the paraventricular and supraoptic nuclei. BNP immunoreactivity was first observed in the lateral hypothalamic area at P15. In retrochiasmatic supraoptic nucleus, BNP immunoreactivity was first observed at P20 and remarkably distributed in adult. In the present study, distinct localization of BNP immunoreactivity was in the hypothalamic cell bodies and fibers. Although the role of BNP in the brain is yet to be determined, these results indicate that BNP in the neurons of hypothalamus play important role in the regulation of a variety of neurosecretory functions as a neuromodulator during postnatal development of the hypothalamus.
Adult
;
Animals
;
Arcuate Nucleus
;
Brain*
;
Dorsomedial Hypothalamic Nucleus
;
Humans
;
Hypothalamic Area, Lateral
;
Hypothalamus*
;
Immunohistochemistry
;
Median Eminence
;
Natriuretic Peptide, Brain
;
Neurons*
;
Neuropeptides
;
Neurotransmitter Agents
;
Paraventricular Hypothalamic Nucleus
;
Parturition
;
Rats*
;
Supraoptic Nucleus
;
Ventromedial Hypothalamic Nucleus
3.Dopaminergic Neurons in the Diencephalon of Striped Field MouseApodemus agrarius coreae.
Young Gil JUNG ; Nam Sub LEE ; Sung Hee MIN ; Moo Gang KIM
Korean Journal of Anatomy 1997;30(6):609-622
The distributions and morphological characteristics of neurons displaying immunoreactivity to the catecholamine synthetic enzymes, tyrosine hydroxylase[TH], dopamine-beta-hydroxylase[DBH], and phenyletha-nolamine-N-methyltransferase[PNMT] were examined in the adjacent sections of the diencephalon of the striped field mouse [Apodemus agrarius coreae].Only TH-, and no DBH- or PNMT-immunoreactive neurons were found in the diencephalon. In the preoptic area, TH-immunoreactive neurons were found in the anterior preoptic nucleus of Loo[APN], periventricular preoptic nucleus, medial preoptic nucleus, lateral preoptic nucleus and suprachiasmatic nucleus. In the hypothalamus, TH-immunoreactive neurons were found in theparaventricular hypothalamic nucleus, periventricular gray, retrochiasmatic area,anterior hypothalamic nucleus of anterior hypothalamic area and retrochiasmatic region of the hypothalamus. In the rostral tuberal region of the hypothalamus, TH-immunoreactive neurons were found in the paraventricular nucleus, periventricular gray and arcuate nucleus. In the midtuberal region of the hypothalamus, TH-immunoreactive neurons were found in the paraventricular nucleus, dorsomedial hypothalamic nucleus, zona incerta and arcuate nucleus. In the caudal tuberal region of the hypothalamus, dorsal hypothalamic nucleus, posterior hypothalamic complex and arcuate nucleus.
Animals
;
Anterior Hypothalamic Nucleus
;
Arcuate Nucleus
;
Diencephalon*
;
Dopaminergic Neurons*
;
Dorsomedial Hypothalamic Nucleus
;
Hypothalamus
;
Immunohistochemistry
;
Mice
;
Neurons
;
Paraventricular Hypothalamic Nucleus
;
Preoptic Area
;
Subthalamus
;
Suprachiasmatic Nucleus
;
Tyrosine
4.Cerebral Activation Associated with Visually Evoked Sexual Arousal in the Limbic System: Functional MR Imaging.
Sung Jong EUN ; Gwang Woo JEONG ; Hyung Joong KIM ; Jeong Jin SEO ; Heoung Keun KANG ; Ki Hyun CHO ; Ka Hyun YOON
Journal of the Korean Radiological Society 2004;51(2):157-163
PURPOSE: To identify the brain centers associated with visually evoked sexual arousal in the human brain, and to investigate the neural mechanism for sexual arousal using functional MRI (fMRI). MATERIALS AND METHODS: A total of 20 sexually potent volunteers consisting of 10 males (mean age: 24) and 10 females (mean age: 23) underwent fMRI on a 1.5 T MR scanner (GE Signa Horizon). The fMRI data were obtained from 7 slices (10 mm slice thickness) parallel to the AC-PC (anterior commissure and posterior commissure) line, giving a total of 511 MR images. The sexual stimulation consisted of a 1-minute rest with black screen, followed by a 4-minute stimulation by an erotic video film, and concluded with a 2-minute rest. The brain activation maps and their quantification were analyzed by the statistical parametric mapping (SPM 99) program. RESULTS: The brain activation regions associated with visual sexual arousal in the limbic system are the posterior cingulate gyrus, parahippocampal gyrus, hypothalamus, medial cingulate gyrus, thalamus, amygdala, anterior cingulate gyrus, insula, hippocampus, caudate nucleus, globus pallidus and putamen. Especially, the parahippocampal gyrus, cingulate gyrus, thalamus and hypothalamus were highly activated in comparison with other areas. The overall activities of the limbic lobe, diencephalon, and basal ganglia were 11.8%, 10.5%, and 3.4%, respectively. In the correlation test between brain activity and sexual arousal, the hypothalamus and thalamus showed positive correlation, but the other brain areas showed no correlation. CONCLUSION: The fMRI is useful to quantitatively evaluate the cerebral activation associated with visually evoked, sexual arousal in the human brain. This result may be helpful by providing clinically valuable information on sexual disorder in humans as well as by increasing the understanding of the neuroanatomical correlates of sexual arousal.
Amygdala
;
Arousal*
;
Basal Ganglia
;
Brain
;
Caudate Nucleus
;
Diencephalon
;
Female
;
Globus Pallidus
;
Gyrus Cinguli
;
Hippocampus
;
Humans
;
Hypothalamus
;
Hypothalamus, Middle
;
Limbic System*
;
Magnetic Resonance Imaging*
;
Male
;
Parahippocampal Gyrus
;
Putamen
;
Thalamus
;
Volunteers
5.Expression of Proopiomelanocortin (POMC) Gene in Rat Hypothalamus and Pituitary Gland as Studied by In Situ Hybridization.
Seung Ryong KIM ; Soo Hyun CHO ; Kyung Tai KIM ; Sam Hyun CHO ; Youn Yeung HWANG ; Hyung MOON
Korean Journal of Obstetrics and Gynecology 1999;42(12):2800-2805
OBJECTIVE: Proopiomelanocortin (POMC) gene is involved in various neuroendocrine reproductive activities and its principal areas of expression are hypothalamus and pituitary gland. However, as it is known as low copy gene, detection of its expression by in situ hybridization is challenging. This study was to examine the degree of basal expression of POMC mRNA and anatomic localization of its expression in rat hypothalamus and pituitary gland as a preliminary study for related reproductive endocrine researches. METHODS: Hypothalamus and pituitary gland of ovariectomized female Spraque-Dawley rat (weight: 250-300 g) was obtained by decapitation with preservation of POMC mRNA by cardiac perfusion of 4% paraformaldehyde. Then, coronal sections of hypothalamus and horizontal sections of pituitary gland were made after paraffin embedding. For in situ hybridization, 35S-labeled antisense RNA probe was used and after in situ hybridization reaction and serial washing procedure, detection of its signal was made by emulsion autoradiography of slide and dark field microscopic examination was done for photographic documentation. Anatomic localization of various nucleus of hypothalamus was done by method proposed by Paxinos and Watson1. RESULTS: Strong expression signal of POMC mRNA was detected in the intermediate lobe of pituitary gland. Less strong, but evenly distributed signals were also detected in the anterior lobe of pituitary gland. In hypothalamic sections, entire area of arcuate nucleus from rostral to caudal direction (between bregma -2.80 mm to bregma -4.30 mm area) showed clear and strong signal of POMC mRNA expression. CONCLUSION: Though POMC gene is known as low copy gene, its basal mRNA expression in pituitary gland and hypothalamus in ovariectomized rat were detectable by in situ hybridization technique. As subpopulation of arcuate nucleus are under complex differential regulation, this in situ hybridization model would be helpful for understanding the effects of various regulatory factors on expression of POMC gene in the specific anatomic area of hypothalamus and pituitary gland.
Animals
;
Arcuate Nucleus
;
Autoradiography
;
Decapitation
;
Female
;
Humans
;
Hypothalamus*
;
In Situ Hybridization*
;
Paraffin Embedding
;
Perfusion
;
Pituitary Gland*
;
Pituitary Gland, Anterior
;
Pituitary Gland, Intermediate
;
Pro-Opiomelanocortin*
;
Rats*
;
RNA, Antisense
;
RNA, Messenger
6.Coexistence of Tyrosine Hydroxylase and Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase in Hypothalamic Neurons of the Rat.
Young Buhm HUH ; Jung Sik CHO ; Chang Sub SONG ; Hee Kyung AHN
Korean Journal of Anatomy 1998;31(1):119-126
The presence and coexistence of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) with tyrosine hydroxylase (TH) was investigated by combining NADPH-diaphorase histochemistry with TH immunohistochemistry in hypothalamic nuclei of the rat. TH-immunoreactive and NADPH-diaphorase positive neurons were found in the medial preoptic area and medial preoptic nucleus, anterior hypothalamic area, dorsomedial hypothalamic nucleus, paraventricular nucleus, supraoptic nucleus and posterior hypothalamic area, respectively. TH and NADPH-diaphorase did not coexist in the anterior hypothalamic area, dorsomedial hypothalamic nucleus, medial preoptic area and posterior hypothalamic area. A considerable portion (30~50%) of the NADPH-diaphorase positive neurons in the supraoptic nucleus colocalized TH. In the medial preoptic area and paraventricular nucleus, some (5~15%) of TH-immunoreactive neurons also contained NADPH-diaphorase activity. NADPH-diaphorase is known to be an indicator of the enzyme nitric oxide synthase; these results therefore suggest that nitric oxide may play an important role in the regulation of the activity of the hypothalamic dopaminergic system of the rat.
Animals
;
Anterior Hypothalamic Nucleus
;
Dorsomedial Hypothalamic Nucleus
;
Hypothalamus
;
Immunohistochemistry
;
NAD*
;
Neurons*
;
Niacinamide*
;
Nitric Oxide
;
Nitric Oxide Synthase
;
Paraventricular Hypothalamic Nucleus
;
Preoptic Area
;
Rats*
;
Supraoptic Nucleus
;
Tyrosine 3-Monooxygenase*
;
Tyrosine*
7.Location of CNS Labeled Neurons Innervating the Rat Thymus Using the Pseudorabies Virus.
Duck Si BYUN ; Sun Young SIN ; Ji Eun SEO ; Chang Hyun LEE ; Bong Hee LEE ; Moo Sam LEE
Korean Journal of Physical Anthropology 1999;12(1):123-137
This experimental studies was to investigate the location of CNS labeled neurons following injection of pseudorabies virus (PRV), Bartha strain, into the rat thymus. After survival times of 96~120 hours following injection of PRV, the rats were perfused, and their spinal cord and brain were frozen sectioned(30micrometer). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope The results were as follows: 1. The PRV labeled spinal cord segments projecting to the rat thymus were founded in cervical and thoracic segments. Densely labeled areas of each spinal cord segment were founded in lamina V, VII, X, intermediolateral nucleus and dorsal nucleus. 2. In the rhombencephalon, PRV labeled neurons projecting to the thymus were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventro-lateral reticular nucleus, medullary reticular nucleus, area postrema, nucleus solitary tract, nucleus raphe obscurus, nucleus raphe pallidus, nucleus raphe magnus, gigantocellular reticular nucleus, lateral paragigantocellular nucleus and spinal trigeminal nucleus. 3. In the mesencephalon, PRV labeled neurons were founded in parabrachial nucleus, Kolliker-Fuse nucleus, central gray matter, substantia nigra, nucleus dorsal raphe, A8 dopamin cells of retrorubral field, Edinger-Westphal nucleus, locus coeruleus, subcoeruleus nucleus and A5 noradrenalin cells. 4. In the prosencephalon, PRV labeled neurons were founded in reuniens thalamic nucleus, paraventricular thalamic nucleus, precommissural nucleus, paraventricular hypothalamic nucleus, anterior hypothalamic nucleus, lateral hypothalamic nucleus, preoptic hypothalamic nucleus, retrochiasmatic area, arcuate nucleus, dorsomedial hypothalamic nucleus and ventromedial hypothalamic nucleus. These results suggest that PRV labeled neurons of the spinal cord projecting to the rat thymus might be the neurons related to the viscero-somatic sensory and sympathetic preganglionic neurons, and PRV labeled neurons of the brain may be the neurons response to the movement of smooth muscle in blood vessels. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory system monitoring the internal environment. These observations provide evidence for previously unknown projections from spinal cord and brain to the thymus which may be play an important role in the regulation of thymic function.
Animals
;
Anterior Hypothalamic Nucleus
;
Arcuate Nucleus
;
Area Postrema
;
Blood Vessels
;
Brain
;
Dorsomedial Hypothalamic Nucleus
;
Herpesvirus 1, Suid*
;
Hypothalamic Area, Lateral
;
Immunohistochemistry
;
Locus Coeruleus
;
Mesencephalon
;
Midline Thalamic Nuclei
;
Muscle, Smooth
;
Neurons*
;
Paraventricular Hypothalamic Nucleus
;
Prosencephalon
;
Pseudorabies*
;
Rats*
;
Reflex
;
Rhombencephalon
;
Spinal Cord
;
Substantia Nigra
;
Thymus Gland*
;
Trigeminal Nucleus, Spinal
;
Ventromedial Hypothalamic Nucleus
8.A Case of Severe Pituitary Dwarfism due to Agenesis of Anterior Pituitary Gland with Pituitary Stalk Transection.
Myoung Ju YOO ; Dong Ki HAN ; Jeh Hoon SHIN ; In Jun SEUL ; Seung Ro LEE
Journal of the Korean Pediatric Society 1994;37(9):1305-1311
We experienced one case of severe pituitary dwarfism in a 10 years old female girl. Magnetic resonance image (MRI) revealed transection of the pituitary stalk stalk with the formation of high intensity ectopic posterior lobe located at the median eminence and agenesis of an anterior lobe of pituitary gland. The serum growth Hormone (GH) response to clonidine and L-dopa revealed severe GH deficiency. The patient had responses to TRH, normal TSH and partial prolactin response, respectively. There was not response LH and FSH to GnRH. The morning cortisol concentration and serum T4 concentration were decreased below the normal range. These findings and no hyperprolactinemia suggested the presence of a vascular connection between the pituitary gland and hypothalamus, which is not visible on MRI. Sofar, the primary cause of idiopathic pituitary dwarfism in many patients is injury to hypothalamus by perinatal insults. In this patient, there was no history of perinatal insults and postnatal head trauma but transection of the pituitary stalk. We report a case of severe pituitary dwarfism due to agenesis with brief review of related litereature.
Child
;
Clonidine
;
Craniocerebral Trauma
;
Dwarfism, Pituitary*
;
Female
;
Gonadotropin-Releasing Hormone
;
Growth Hormone
;
Humans
;
Hydrocortisone
;
Hyperprolactinemia
;
Hypothalamus
;
Levodopa
;
Magnetic Resonance Imaging
;
Median Eminence
;
Pituitary Gland*
;
Pituitary Gland, Anterior*
;
Prolactin
;
Reference Values
9.Expression and Distribution of BDNF (Brain Derived Neurotrophic Factor) in the Rat Hypothalamus.
Korean Journal of Anatomy 2009;42(2):131-138
BDNF belongs to the neurotrophin family and important molecular mediator of functional and structural plasticity. The highest levels of BDNF are found in the hippocampus and hypothalamus of the adult rat. Hypothalamus is important because of its high degree of plasticity, but little is known about distribution of BDNF in hypothalamic nuclei. Therefore, it is necessary to study distribution and expression pattern of BDNF in each hypothalamic nuclei to understand changes of BDNF through various neural damages including spinal cord injury. Through this experiment, we found specific BDNF expression pattern in some regions of hypothalamus and the results are as follows. 1) BDNF expressions were found in median eminence, arcuate nucleus, supraoptic nucleus, and periventricular nucleus of rat hypothalamus. 2) BDNF immunoreactive cells and nerve fibers were of various shapes and sizes. 3) Glial cells also express BDNF in certain hypothalamic nuclei. These results seem to be useful for future investigations of neurochemical changes in the hypothalamus induced by various neural trauma or degenerative changes
Adult
;
Animals
;
Arcuate Nucleus
;
Brain-Derived Neurotrophic Factor
;
Hippocampus
;
Humans
;
Hypothalamus
;
Median Eminence
;
Nerve Fibers
;
Neuroglia
;
Plastics
;
Rats
;
Spinal Cord Injuries
;
Supraoptic Nucleus
10.Neuroanatomy of Sleep-Wake Regulation and its Application to Pharmacotherapy.
Korean Journal of Psychopharmacology 2007;18(3):133-142
A current hypothesis of sleep-wake regulation proposes that the sleep process starts with the activation of sleep-promoting neurons located in the preoptic area of the anterior hypothalamus. This activation leads to the inhibition of wake-promoting neurons located in the posterior hypothalamus, basal forebrain, and mesopontine tegmentum, which, in turn removes inhibition from the sleep-promoting structures(i.e., disinhibition) to initiate the sleep process. Mutual inhibition between these wake- and sleep-promoting neurons results in switching properties that define discrete wakeful and sleep states with sharp transitions between them. Wake-promoting nuclei include the orexinergic lateral hypothalamic/perifornical area, the histaminergic tuberomammillary nucleus, the cholinergic pedunculopontine tegmental nucleus, the noradrenergic locus coeruleus, the 5-hydroxytryptaminergic raphe nuclei, and possibly the dopaminergic ventral tegmental area. The major sleep-promoting nucleus is the GABAergic ventrolateral preoptic nucleus of the hypothalamus. The regulation of sleep is classically viewed as the dual interaction of circadian(SCN-based) and homeostatic processes, and the propensity to be asleep or awake at any given time is a consequence of a sleep debt and its interaction with signals from the SCN circadian clock. To better understand the mechanisms of sleep and wakefulness, the focus of pharmacotherapy is on targeting specific therapies to the particular defect in sleep-wake regulation.
Circadian Clocks
;
Circadian Rhythm
;
Drug Therapy*
;
Hypothalamic Area, Lateral
;
Hypothalamus
;
Hypothalamus, Anterior
;
Hypothalamus, Posterior
;
Locus Coeruleus
;
Neuroanatomy*
;
Neurons
;
Pedunculopontine Tegmental Nucleus
;
Preoptic Area
;
Prosencephalon
;
Raphe Nuclei
;
Sleep Wake Disorders
;
Ventral Tegmental Area
;
Wakefulness