1.Role of inhibiting LIM-kinase2 in improving erectile function through suppression of corporal fibrosis in a rat model of cavernous nerve injury.
Juhyun PARK ; Sung Yong CHO ; Kwanjin PARK ; Ji Sun CHAI ; Hwancheol SON ; Soo Woong KIM ; Jae-Seung PAICK ; Min Chul CHO
Asian Journal of Andrology 2018;20(4):372-378
We evaluated whether LIM-kinase 2 inhibitor (LIMK2i) could improve erectile function by suppressing corporal fibrosis through the normalization of the Rho-associated coiled-coil protein kinase 1 (ROCK1)/LIMK2/Cofilin pathway in a rat model of cavernous nerve crush injury (CNCI). Sixty 11-week-old male Sprague-Dawley rats were divided equally into five groups: sham surgery (S), CNCI (I), and CNCI treated with low-dose (L), medium-dose (M), and high-dose (H) LIMK2i. The L, M, and H groups were treated with a daily intraperitoneal injection of LIMK2i (2.5, 5.0, and 10.0 mg kg-1 body weight, respectively) for 1 week after surgery. The erectile response was assessed using electrostimulation at 1 week, postoperatively. Penile tissues were processed for Masson's trichrome staining, double immunofluorescence, and Western blot assay. Erectile responses in the H group improved compared with the I group, while the M group showed only partial improvement. A significantly decreased smooth muscle/collagen ratio and an increased content of fibroblasts positive for phospho-LIMK2 were noted in the I group. The M and H groups revealed significant improvements in histological alterations and the dysregulated LIMK2/Cofilin pathway, except for LIMK2 phosphorylation in the M group. The inhibition of LIMK2 did not affect the ROCK1 protein expression. The content of fibroblasts positive for phospho-LIMK2 in the H group returned to the level found in the S group, whereas it did not in the M group. However, the L group did not exhibit such improvements. Our data suggest that the inhibition of LIMK2, particularly with administration of 10.0 mg kg-1 body weight LIMK2i, can improve corporal fibrosis and erectile function by normalizing the LIMK2/Cofilin pathway.
Animals
;
Cofilin 1/metabolism*
;
Electric Stimulation
;
Erectile Dysfunction/etiology*
;
Fibroblasts/pathology*
;
Fibrosis/drug therapy*
;
Lim Kinases/antagonists & inhibitors*
;
Male
;
Penile Diseases/drug therapy*
;
Penis/innervation*
;
Peripheral Nerve Injuries/pathology*
;
Phosphorylation
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
rho-Associated Kinases/genetics*
2.The effects of single versus combined therapy using LIM-kinase 2 inhibitor and type 5 phosphodiesterase inhibitor on erectile function in a rat model of cavernous nerve injury-induced erectile dysfunction.
Min Chul CHO ; Junghoon LEE ; Juhyun PARK ; Sohee OH ; Ji Sun CHAI ; Hwancheol SON ; Jae-Seung PAICK ; Soo Woong KIM
Asian Journal of Andrology 2019;21(5):493-500
We aimed to determine whether combination of LIM-kinase 2 inhibitor (LIMK2i) and phosphodiesterase type-5 inhibitor (PDE5i) could restore erectile function through suppressing cavernous fibrosis and improving cavernous apoptosis in a rat model of cavernous nerve crush injury (CNCI). Seventy 12-week-old Sprague-Dawley rats were equally distributed into five groups as follows: (1) sham surgery (Group S), (2) CNCI (Group I), (3) CNCI treated with daily intraperitoneal administration of 10.0 mg kg-1 LIMK2i (Group I + L), (4) daily oral administration of 20.0 mg kg-1 udenafil, PDE5i (Group I + U), and (5) combined administration of 10.0 mg kg-1 LIMK2i and 20.0 mg kg-1 udenafil (Group I + L + U). Rats in Groups I + L, I + U, and I + L + U were treated with respective regimens for 2 weeks after CNCI. At 2 weeks after surgery, erectile response was assessed using electrostimulation. Penile tissues were processed for histological studies and western blot. Group I showed lower intracavernous pressure (ICP)/mean arterial pressure (MAP), lower area under the curve (AUC)/MAP, decreased immunohistochemical staining for alpha-smooth muscle (SM) actin, higher apoptotic index, lower SM/collagen ratio, increased phospho-LIMK2-positive fibroblasts, decreased protein kinase B/endothelial nitric oxide synthase (Akt/eNOS) phosphorylation, increased LIMK2/cofilin phosphorylation, and increased protein expression of fibronectin, compared to Group S. In all three treatment groups, erectile responses, protein expression of fibronectin, and SM/collagen ratio were improved. Group I + L + U showed greater improvement in erectile response than Group I + L. SM content and apoptotic index in Groups I + U and I + L + U were improved compared to those in Group I. However, Group I + L did not show a significant improvement in SM content or apoptotic index. The number of phospho-LIMK2-positive fibroblasts was normalized in Groups I + L and I + L + U, but not in Group I + U. Akt/eNOS phosphorylation was improved in Groups I + U and I + L + U, but not in Group I + L. LIMK2/cofilin phosphorylation was improved in Groups I + L and I + L + U, but not in Group I + U. Our data indicate that combined treatment of LIMK2i and PDE5i immediate after CN injury could improve erectile function by improving cavernous apoptosis or eNOS phosphorylation and suppressing cavernous fibrosis. Rectification of Akt/eNOS and LIMK2/cofilin pathways appears to be involved in their improvement.
Animals
;
Apoptosis/drug effects*
;
Arterial Pressure
;
Electric Stimulation
;
Erectile Dysfunction/pathology*
;
Lim Kinases/antagonists & inhibitors*
;
Male
;
Nerve Crush
;
Nitric Oxide Synthase Type III/metabolism*
;
Penis/pathology*
;
Peripheral Nerve Injuries/pathology*
;
Phosphodiesterase 5 Inhibitors/therapeutic use*
;
Phosphorylation
;
Pyrimidines/therapeutic use*
;
Rats
;
Rats, Sprague-Dawley
;
Sulfonamides/therapeutic use*