1.Transmission Model of Tendon-Sheath System for Endoscopic Flexible Instrument and Experimental Study
Liaoyuan AI ; Zhen PAN ; Xitong YU ; Chengli SONG
Journal of Medical Biomechanics 2021;36(5):E769-E775
Objective To establish the pushing transmission model of tendon-sheath system (TSS) for endoscopic flexible instrument, and study the key influencing factors of transmission efficiency. Methods The force and displacement transmission models of TSS in pushing configuration were built and simulated. The tendon-sheath transmission testing platform was designed to validate the model. The influencing factors, such as transmission velocity, tendon-sheath diameter ratio, curvature radius, were explored using this setup. Results There were obvious nonlinear phenomenon in force and displacement transmission. The model simulation results accorded quite well with the experiment results. Transmission velocity, tendon-sheath diameter ratio, curvature radius all had great effects on pushing force transmission of endoscopic flexible instrument, while they had a smaller effect on displacement transmission. Conclusions The proposed model can be used for calculating pushing force transmission of tendon-sheath system for endoscopic flexible instrument, so as to provide the doctors with force feedback at the tip of the end effector, and ensure the safe operation and improve the surgical effects. For better design and control of endoscopic flexible instrument, the transmission velocity, tendon-sheath diameter ratio, curvature radius must be comprehensively considered.
2.Design and Experimental Study on Flexible Articulation of Electric Stapler
Zhen PAN ; Liaoyuan AI ; Haochen WANG ; Chenxu LIU ; Wenming GE ; Chengli SONG
Journal of Medical Biomechanics 2021;36(6):E883-E889
Objective To design a notched flexible articulation applied to electric stapler and study its turning performance. Methods The notched flexible articulation was designed and modeled. The kinematics and statics models of the articulation were established for simulation calculations. The stress, deflection angle, top displacement and driving force of the articulation with 3 different turning structures were studied under equal and variable stiffness of symmetrical notches by using finite element simulation. An experimental platform for performance test of the turning structure was built to verify the simulation results and the model. Results The theoretical model of the turning structure in bending process was basically consistent with the experimental results. With the optimization of symmetrical notch stiffness, the maximum stress of the articulation with variable stiffness was reduced by 20.64% and 39.20%, respectively. The articulation with variable stiffness required the smallest tensile force during bending, which was 33.41% lower than that of the articulation with equal stiffness, and the tip displacement (30.8 mm) along the bending plane was the smallest. The maximum deflection angle for the articulation with 3 different turning structures all could reach 90°. Conclusions The kinematics and statics models of the articulation can be used for the calculation of its tensile force and position changes. The turning performance of the articulation with variable stiffness using symmetrical notch is better than that with equal stiffness. The notched flexible articulation meets the design requirements and the turning needs of electric stapler.