1.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
2.A preliminary study on the vertical traction weight of cervical kyphosis treated by bidirectional cervical traction.
Hai-Lian CHEN ; Yu-Ming ZHANG ; Wen-Jie ZHANG ; Yan-Ying HUANG ; Yong ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(8):822-827
OBJECTIVE:
To explore the optimal vertical traction weight, clinical efficacy, and safety of bidirectional cervical traction in the treatment of cervical kyphosis.
METHODS:
A total of 130 patients with neck pain and cervical kyphosis confirmed by cervical DR who visited the hospital from April 2023 to April 2024 were enrolled. They were divided into 4 groups according to the vertical traction weight accounting for 5%, 10%, 15%, and 20% of their body weight, respectively. The 5% body weight traction group included 33 cases (13 males and 20 females) with an average age of (34.00±10.58) years old;the 10% body weight traction group included 35 cases (17 males and 18 females) with an average age of (32.23±8.39) years old;the 15% body weight traction group included 32 cases (14 males and 18 females) with an average age of (33.88±10.09) years old;the 20% body weight traction group included 30 cases (11 males and 19 females) with an average age of (36.20±9.13) years old. Each group received treatment for 2 weeks. The visual analogue scale (VAS) score, neck disability index (NDI), and C2-C7 Cobb angle on cervical lateral X-ray films before and after treatment were recorded to evaluate the clinical efficacy of the 4 groups.
RESULTS:
When the traction weight was 10% and 15% of body weight, the pain VAS and NDI were significantly improved, and the C2-C7 Cobb angle increased, with statistically significant differences (P<0.05), and no adverse reactions occurred. However, in the 5% body weight group, the above indicators showed no significant changes, with no statistically significant differences (P>0.05). In the 20% body weight group, some patients could not tolerate the treatment, and adverse reactions such as dizziness, nausea, and aggravated neck pain occurred.
CONCLUSION
The optimal vertical traction weight of bidirectional cervical traction for cervical kyphosis is 10%-15% of body weight, which can effectively improve neck pain and cervical function, increase the C2-C7 Cobb angle of the cervical spine, with high safety, and is worthy of promotion and application.
Humans
;
Male
;
Female
;
Traction/methods*
;
Kyphosis/physiopathology*
;
Adult
;
Cervical Vertebrae/physiopathology*
;
Middle Aged
;
Neck Pain
;
Young Adult
3.Vascular Protection of Neferine on Attenuating Angiotensin II-Induced Blood Pressure Elevation by Integrated Network Pharmacology Analysis and RNA-Sequencing Approach.
A-Ling SHEN ; Xiu-Li ZHANG ; Zhi GUO ; Mei-Zhu WU ; Ying CHENG ; Da-Wei LIAN ; Chang-Geng FU ; Jun PENG ; Min YU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(8):694-706
OBJECTIVE:
To explore the functional roles and underlying mechanisms of neferine in the context of angiotensin II (Ang II)-induced hypertension and vascular dysfunction.
METHODS:
Male mice were infused with Ang II to induce hypertension and randomly divided into treatment groups receiving neferine or a control vehicle based on baseline blood pressure using a random number table method. The hypertensive mouse model was constructed by infusing Ang II via a micro-osmotic pump (500 ng/kg per minute), and neferine (0.1, 1, or 10 mg/kg), valsartan (10 mg/kg), or double distilled water was administered intragastrically once daily for 6 weeks. A non-invasive blood pressure system, ultrasound, and hematoxylin and eosin staining were performed to assess blood pressure and vascular changes. RNA sequencing and network pharmacology were employed to identify differentially expressed transcripts (DETs) and pathways. Vascular ring tension assay was used to test vascular function. A7R5 cells were incubated with neferine for 24 h and then treated with Ang II to record the real-time Ca2+ concentration by confocal microscope. Immunohistochemistry (IHC) and Western blot were used to evaluate vasorelaxation, calcium, and the extracellular signal-regulated kinase (ERK)1/2 pathway.
RESULTS:
Neferine treatment effectively mitigated the elevation in blood pressure, pulse wave velocity, aortic thickening in the abdominal aorta of Ang II-infused mice (P<0.05). RNA sequencing and network pharmacology analysis identified 355 DETs that were significantly reversed by neferine treatment, along with 25 potential target genes, which were further enriched in multiple pathways and biological processes, such as ERK1 and ERK2 cascade regulation, calcium pathway, and vascular smooth muscle contraction. Further investigation revealed that neferine treatment enhanced vasorelaxation and reduced Ca2+-dependent contraction of abdominal aortic rings, independent of endothelium function (P<0.05). The underlying mechanisms were mediated, at least in part, via suppression of receptor-operated channels, store-operated channels, or voltage-operated calcium channels. Neferine pre-treatment demonstrated a reduction in intracellular Ca2+ release in Ang II stimulated A7R5 cells. IHC staining and Western blot confirmed that neferine treatment effectively attenuated the upregulation of p-ERK1/2 both in vivo and in vitro, which was similar with treatment of ERK1/2 inhibitor PD98059 (P<0.05).
CONCLUSIONS
Neferine remarkably alleviates Ang II-induced elevation of blood pressure, vascular dysfunction, and pathological changes in the abdominal aorta. This beneficial effect is mediated by the modulation of multiple pathways, including calcium and ERK1/2 pathways.
Animals
;
Angiotensin II
;
Male
;
Benzylisoquinolines/therapeutic use*
;
Network Pharmacology
;
Blood Pressure/drug effects*
;
Sequence Analysis, RNA
;
Mice
;
Hypertension/chemically induced*
;
Mice, Inbred C57BL
;
Calcium/metabolism*
4.RXRα modulates hepatic stellate cell activation and liver fibrosis by targeting CaMKKβ-AMPKα axis.
Lijun CAI ; Meimei YIN ; Shuangzhou PENG ; Fen LIN ; Liangliang LAI ; Xindao ZHANG ; Lei XIE ; Chuanying WANG ; Huiying ZHOU ; Yunfeng ZHAN ; Gulimiran ALITONGBIEKE ; Baohuan LIAN ; Zhibin SU ; Tenghui LIU ; Yuqi ZHOU ; Zongxi LI ; Xiaohui CHEN ; Qi ZHAO ; Ting DENG ; Lulu CHEN ; Jingwei SU ; Luoyan SHENG ; Ying SU ; Ling-Juan ZHANG ; Fu-Quan JIANG ; Xiao-Kun ZHANG
Acta Pharmaceutica Sinica B 2025;15(7):3611-3631
Hepatic stellate cells (HSCs) are the primary fibrogenic cells in the liver, and their activation plays a crucial role in the development and progression of hepatic fibrosis. Here, we report that retinoid X receptor-alpha (RXRα), a unique member of the nuclear receptor superfamily, is a key modulator of HSC activation and liver fibrosis. RXRα exerts its effects by modulating calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-mediated activation of AMP-activated protein kinase-alpha (AMPKα). In addition, we demonstrate that K-80003, which binds RXRα by a unique mechanism, effectively suppresses HSC activation, proliferation, and migration, thereby inhibiting liver fibrosis in the CCl4 and amylin liver NASH (AMLN) diet animal models. The effect is mediated by AMPKα activation, promoting mitophagy in HSCs. Mechanistically, K-80003 activates AMPKα by inducing RXRα to form condensates with CaMKKβ and AMPKα via a two-phase process. The formation of RXRα condensates is driven by its N-terminal intrinsic disorder region and requires phosphorylation by CaMKKβ. Our results reveal a crucial role of RXRα in liver fibrosis regulation through modulating mitochondrial activities in HSCs. Furthermore, they suggest that K-80003 and related RXRα modulators hold promise as therapeutic agents for fibrosis-related diseases.
5.Elevated TMCO1 expression in gastric cancer is associated poor prognosis and promotes malignant phenotypes of tumor cells by inhibiting apoptosis.
Bowen SONG ; Renjie ZHOU ; Ying XU ; Jinran SHI ; Zhizhi ZHANG ; Jing LI ; Zhijun GENG ; Xue SONG ; Lian WANG ; Yueyue WANG ; Lugen ZUO
Journal of Southern Medical University 2025;45(11):2385-2393
OBJECTIVES:
To investigate the impact of high expression of transmembrane and coiled helix structural domain 1 (TMCO1) on prognosis of gastric cancer and the possible mechanisms.
METHODS:
TMCO1 expression in gastric cancer and its effect on gastric cancer progression and prognosis were analyzed using publicly available databases and clinical data of patients undergoing radical surgery in our hospital, and its possible biological functions were explored using KEGG and GO analyses. In gastric cancer HGC-27 cells, the effects of lentivirus-mediated TMCO1 overexpression and TMCO1 silencing on cell apoptosis, proliferation, invasion and migration were examined.
RESULTS:
TMCO1 expression was significantly elevated in gastric cancer tissues (P<0.05), and its high expression was positively correlated with cancer progression (P<0.001) and a lowered postoperative 5-year survival rate of the patients (P<0.05). Bioinformatic analyses suggested that TMCO1 may affect gastric cancer cell apoptosis via Wnt signaling. In HGC-27 cells, TMCO1 overexpression significantly promoted tumor cell proliferation, inhibited cell apoptosis, and enhanced cell migration and invasion, whereas TMCO1 silencing produced the opposite effects. Western blotting showed that β-catenin levels were significantly upregulated in TMCO1-overexpressing cells and downregulated in cells with TMCO1 silencing.
CONCLUSIONS
TMCO1 is overexpressed in gastric cancer tissues, and its high expression promotes gastric cancer progression and affects long-term prognosis of the patients possibly by activating the Wnt/ β-catenin signaling pathway to inhibit apoptosis of gastric cancer cells.
Humans
;
Stomach Neoplasms/metabolism*
;
Apoptosis
;
Prognosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Movement
;
Wnt Signaling Pathway
;
beta Catenin/metabolism*
;
Gene Expression Regulation, Neoplastic
6.High YEATS2 expression promotes epithelial-mesenchymal transition in gastric cancer cells by activating the Wnt/β-catenin signaling pathway.
Xuening JIANG ; Qingqing HUANG ; Ying XU ; Shunyin WANG ; Xiaofeng ZHANG ; Lian WANG ; Yueyue WANG ; Lugen ZUO
Journal of Southern Medical University 2025;45(11):2416-2426
OBJECTIVES:
To investigate YEATS2 expression in gastric cancer (GC), its prognostic value, and its regulatory role in epithelial-mesenchymal transition (EMT) of GC cells.
METHODS:
YEATS2 expression in GC was analyzed using publicly available databases. Paired GC and adjacent tissues were collected from 100 patients undergoing radical surgery for immunohistochemical detection of YEATS2 expression, and its correlations with the patients' clinicopathological parameters and Ki67 expression were analyzed. The prognostic value of YEATS2 was assessed using Kaplan-Meier analysis, Cox regression and ROC curves, and its regulatory mechanisms were analyzed using KEGG enrichment analysis. In cultured GC cell lines (HGC-27 and AGS), the effect of YEATS2 knockdown and overexpression on migration, invasion and EMT of the cells were examined with scratching assay, Transwell assay and Western blotting.
RESULTS:
YEATS2 was significantly overexpressed in GC tissues with a positive correlation with Ki67 (P<0.05). High YEATS2 expression was associated with elevated CEA (≥5 μg/L), CA19-9 (≥37 kU/L), T3-4 stage, and N2-3 stage (all P<0.05). Patients with high YEATS2 expression had significantly reduced 5-year survival (P<0.001); ROC analysis showed that YEATS2 expression levels had a sensitivity of 80.00% and a specificity of 66.67% for predicting patient survival (P<0.05). Cox regression identified high YEATS2 as an independent risk factor for poor postoperative 5-year survival outcome of GC patients (HR: 1.675, 95%CI: 1.013-2.771; P=0.045). KEGG enrichment analysis suggested involvement of YEATS2 in EMT in GC and Wnt/β-catenin signaling. In cultured GC cells, YEATS2 overexpression significantly promoted cell migration and invasion, upregulated the expressions of vimentin, N-cadherin, Wnt and active β-catenin, and downregulated E-cadherin expression, and these changes were obviously suppressed by treatment with XAV-939 (a Wnt/β-catenin inhibitor).
CONCLUSIONS
High YEATS2 expression activates Wnt/β-catenin signaling to promote EMT in GC and is correlated with poor prognosis of GC patients.
Humans
;
Stomach Neoplasms/pathology*
;
Epithelial-Mesenchymal Transition
;
Wnt Signaling Pathway
;
Cell Line, Tumor
;
Prognosis
;
Cell Movement
;
Male
;
Female
;
beta Catenin/metabolism*
7.Effects of Total Intravenous Anesthesia and Inhalational Anesthesia on Postoperative Recovery in Patients Undergoing Transsphenoidal Pituitary Surgery:A Systematic Review.
Yun-Ying FENG ; Yu-Pei ZHANG ; Yue-Lun ZHANG ; Bing XING ; Wei LIAN ; Xiao-Peng GUO ; Lu-Lu MA ; Yu-Guang HUANG
Acta Academiae Medicinae Sinicae 2025;47(3):434-440
Objective To systematically evaluate the effects of total intravenous anesthesia and inhalational anesthesia on postoperative recovery in patients undergoing transsphenoidal pituitary tumor resection.Methods A comprehensive search was conducted in international biomedical databases including Ovid Medline,Embase,CINAHL(EBSCO),Cochrane Library,and Web of Science,from inception to July 4,2023.Additionally,ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing and completed trials.The randomized controlled trials(RCT)comparing total intravenous anesthesia and inhalational anesthesia in patients undergoing transsphenoidal surgery for pituitary tumors were included.The methodological quality of the included studies was evaluated by the Cochrane Collaboration tool.Relevant data were extracted and synthesized for analysis.Results A total of 327 records were identified,of which eight RCTs met the inclusion criteria.Four studies showed that the patients receiving desflurane or sevoflurane anesthesia experienced faster emergence from anesthesia than those receiving propofol.Two studies indicated that patients in the propofol group had lower levels of emergence agitation and a lower incidence of early postoperative nausea and vomiting.The results on postoperative cognitive function were inconsistent across studies.No differences were found between the groups in terms of postoperative complications or overall recovery quality during hospitalization.Conclusions Inhalational anesthesia appears to provide an advantage in promoting faster emergence following transsphenoidal pituitary surgery,whereas total intravenous anesthesia may contribute to smoother and more stable recovery.Further high-quality studies are needed to clarify the effects of different anesthetic techniques on both short- and long-term postoperative recovery.
Humans
;
Anesthesia, Intravenous
;
Pituitary Neoplasms/surgery*
;
Anesthesia, Inhalation
;
Randomized Controlled Trials as Topic
;
Anesthesia Recovery Period
;
Pituitary Gland/surgery*
;
Postoperative Period
8.Evidence-Based Dampness-Heat ZHENG (Syndrome) in Cancer: Current Progress toward Establishing Relevant Animal Model with Pancreatic Tumor.
Ju-Ying JIAO ; Chien-Shan CHENG ; Zhang-Qi CAO ; Lian-Yu CHEN ; Zhen CHEN
Chinese journal of integrative medicine 2024;30(1):85-95
Cancer is one of the deadliest diseases affecting the health of human beings. With limited therapeutic options available, complementary and alternative medicine has been widely adopted in cancer management and is increasingly becoming accepted by both patients and healthcare workers alike. Chinese medicine characterized by its unique diagnostic and treatment system is the most widely applied complementary and alternative medicine. It emphasizes symptoms and ZHENG (syndrome)-based treatment combined with contemporary disease diagnosis and further stratifies patients into individualized medicine subgroups. As a representative cancer with the highest degree of malignancy, pancreatic cancer is traditionally classified into the "amassment and accumulation". Emerging perspectives define the core pathogenesis of pancreatic cancer as "dampness-heat" and the respective treatment "clearing heat and resolving dampness" has been demonstrated to prolong survival in pancreatic cancer patients, as has been observed in many other cancers. This clinical advantage encourages an exploration of the essence of dampness-heat ZHENG (DHZ) in cancer and investigation into underlying mechanisms of action of herbal formulations against dampness-heat. However, at present, there is a lack of understanding of the molecular characteristics of DHZ in cancer and no standardized and widely accepted animal model to study this core syndrome in vivo. The shortage of animal models limits the ability to uncover the antitumor mechanisms of herbal medicines and to assess the safety profile of the natural products derived from them. This review summarizes the current research on DHZ in cancer in terms of the clinical aspects, molecular landscape, and animal models. This study aims to provide comprehensive insight that can be used for the establishment of a future standardized ZHENG-based cancer animal model.
Animals
;
Humans
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Pancreatic Neoplasms/therapy*
;
Models, Animal
;
Syndrome
9.The Effects of The PD-1/PD-L1 Axis and Its Implications for Immunotherapy in Gastrointestinal Tract Cancers
Xin CAO ; Jin-Ping ZHANG ; Li-Ying TU ; Yun-Lian ZOU
Progress in Biochemistry and Biophysics 2024;51(8):1834-1847
Programmed death-1 (PD-1) is an inhibitory immune checkpoint that binds to programmed death-ligand 1 (PD-L1) to regulate the immune response and maintain immune system homeostasis of the immune system. Through overexpression of PD-L1, tumor cells bind to PD-1 on the surface of immune cells, inhibiting the activity and function of immune cells, leading to immune escape of cancer cells and tumor progression. Gastrointestinal cancer is a common malignancy with a high mortality rate worldwide, and the effectiveness of current systematic treatment options is limited. In recent years, immune checkpoint inhibitors (ICIs) such as PD-1/PD-L1 inhibitors have attracted much attention in cancer therapy. Immunotherapy has been incorporated into the treatment of some gastrointestinal malignancies. Different from traditional treatment, it uses various means to stimulate and enhance the immune function of the body to achieve the therapeutic purpose of controlling and eliminating tumor cells. However, although PD-1/PD-L1 inhibitors have shown potential in the treatment of gastrointestinal tumors, the efficacy of single inhibitor therapy is limited, which may be due to the ability of tumors to escape immune attack through other pathways after inhibitor treatment, or the presence of other immunosuppressive factors. For example, PD-1 and PD-L1 inhibitors can be combined with other immune checkpoint drugs, molecularly targeted drugs, or chemotherapy drugs to simultaneously act on different immune pathways and improve the comprehensive effect of immunotherapy. However, to achieve an effective combination therapy, we need to delve into the specific mechanisms of action of the PD-1/PD-L1 axis in the development and progression of gastrointestinal tumors, which can help to develop the best treatment strategy and provide individualized treatment options for the appropriate patient population. Therefore, future studies should focus on the regulatory mechanisms of PD-1/PD-L1 axis and evaluate the therapeutic effects of different treatment combinations on gastrointestinal tumors. In this paper, we review the research progress of PD-1/PD-L1 axis in tumorigenicity and its mechanism, and review the single and combined treatment strategies of PD-1 and PD-L1 inhibitors in gastrointestinal tumors.
10.Study on Mechanism of Xiaojin Pills in Treatment of Breast Cancer Based on Network Pharmacology and Experimental Verification
Delian NIU ; Dongyin LIAN ; Qin HU ; Lihua SUN ; Ying CHEN ; Hongping HOU ; Guangping ZHANG ; Jianrong LI ; Zuguang YE ; Bo PENG
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(2):41-49
Objective To explore the molecular mechanism of Xiaojin Pills in the treatment of breast cancer using an integrated network pharmacology and experimental verification.Methods The chemical components and potential targets of Xiaojin Pills were obtained from TCMSP,TCM-ID,ETCM and SwissTargetPrediction databases.Breast cancer related targets were collected from GeneCards,OMIM and KEGG databases.The overlapped targets were imported into STRING database to analysis a protein-protein interaction(PPI).The key targets of PPI networks were screened based on node topology parameter values through Cytoscape 3.8.0.DAVID database was used to analyze the GO and KEGG pathway enrichment to build drug-chemical components-key targets-signaling pathway network.The breast cancer cell lines MDA-MB-231 and SK-BR-3 were used to study the effects of Xiaojin Pills extract on cell apoptosis,migration and invasion,and to verify the key pathway obtained by enrichment analysis.Results Totally 181 chemical components in Xiaojin Pills were obtained,including quercetin,myricetin,pinocembrin and β-sitosterol.615 potential targets were identified for the anti-breast cancer effects of Xiaojin Pills.After overlapping,170 key targets against breast cancer were identified based on the topological analysis,which included SRC,ERK1/2,AKT1,EGFR,etc.KEGG analysis enriched pathways including pathways in cancer,MAPK signaling pathway,endocrine resistance,PI3K-AKT signaling pathway,EGFR tyrosine kinase inhibitor resistance,apoptosis,and HIF-1 signaling pathway,which may play important roles in the therapeutic effects of Xiaojin Pills against breast cancer.GO enrichment was involved in protein phosphorylation,inflammatory response,negative regulation of apoptosis,and positive regulation of ERK1 and ERK2 cascades.Cell experiments showed that Xiaojin Pills further induced mitochondria-dependent apoptosis by inhibiting the activation of MAPK and PI3K-AKT pathways.At the same time,the expressions of ZO-1 and β-catenin increased,and the epithelial-mesenchymal transformation process was reversed to inhibit the metastasis of breast cancer cells.Conclusion The key targets and signaling pathways of Xiaojin Pills in the treatment of breast cancer are studied through network pharmacology combined with in vitro experiments,which provided a basis for further study of its pharmacodynamic material basis,mechanism of action and clinical application.

Result Analysis
Print
Save
E-mail