1.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
2.Danggui Shaoyaosan Combined with Yinchenhaotang Regulates Lipid Metabolism to Ameliorate Type 2 Diabetes Mellitus Complicated with Metabolic Dysfunction-associated Steatotic Liver Disease
Yilin XU ; Liu LI ; Junju ZOU ; Hong LI ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):38-47
ObjectiveTo explore the regulatory effect and mechanism of Danggui Shaoyaosan combined with Yinchenhaotang on lipid metabolism in the mouse model of type 2 diabetes mellitus (T2DM) complicated with metabolic dysfunction-associated steatotic liver disease (MASLD) based on network pharmacology and animal experiments. MethodsTwenty-four MKR transgenic diabetic mice were randomly allocated into 4 groups: Model, low-dose (12.6 g·kg-1) Chinese medicine (concentrated decoction of Danggui Shaoyaosan combined with Yinchenhaotang), high-dose (25.2 g·kg-1) Chinese medicine, and Western medicine (metformin, 0.065 g·kg-1). Six FVB mice were used as the normal group. All groups were treated for 6 consecutive weeks. The mice in the drug treatment groups were administrated with corresponding agents by gavage, and those in the normal group and model group received the same volume of distilled water. Fasting blood glucose, body weight, liver weight, glucose tolerance, liver function indicators, blood lipid levels, and pathological changes in the liver were evaluated for each group. Network pharmacology was employed to analyze the targets and pathways of Danggui Shaoyaosan combined with Yinchenhaotang in the treatment of T2DM complicated with MASLD. Molecular biological techniques were used to verify the enriched key targets. ResultsCompared with the model group, each treatment group showed reduced fasting blood glucose, body weight, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and liver weight (P<0.01). The high-dose Chinese medicine group was superior to the low-dose group in reducing low-density lipoprotein (LDL), increasing high-density lipoprotein (HDL), and recovering glucose tolerance (AUC) and ALT (P<0.05), with the effect similar to that of the Western medicine group. Morphologically, Chinese medicine groups showed reduced lipid accumulation and alleviated pathological damage in the liver tissue, with the high-dose group demonstrating more significant changes. Network pharmacology results showed that Danggui Shaoyaosan combined with Yinchenhaotang may exert therapeutic effects through multiple targets such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), B-cell lymphoma-2 (Bcl-2), MYC oncogene (MYC), and interleukin-1β (IL-1β). Western blot showed that compared with the model group, the treatment groups demonstrated down-regulated protein levels of FAS and ACC (P<0.01) and up-regulated protein levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and UCP1 (P<0.01). Compared with the low-dose Chinese medicine group, the high-dose Chinese medicine group exhibited down-regulated protein levels of FAS and ACC and up-regulated protein levels of PGC-1α and UCP1 (P<0.05). ConclusionDanggui Shaoyaosan combined with Yinchenhaotang has the effect of ameliorating T2DM complicated with MASLD and can improve the liver lipid metabolism by up-regulating the protein levels of Fas and ACC and down-regulating the protein levels of PGC-1α and UCP1.
3.Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis.
Pei-Yue LUO ; Jun-Rong ZOU ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Li-Ying ZHENG ; Biao QIAN
Asian Journal of Andrology 2025;27(2):166-176
In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Male
;
Humans
;
Autophagy/physiology*
;
Apoptosis/physiology*
;
Erectile Dysfunction/physiopathology*
;
Fibrosis
;
Penis/pathology*
;
Animals
;
Endothelial Cells/pathology*
;
Myocytes, Smooth Muscle/pathology*
4.Cryo-EM structures of Nipah virus polymerase complex reveal highly varied interactions between L and P proteins among paramyxoviruses.
Lu XUE ; Tiancai CHANG ; Jiacheng GUI ; Zimu LI ; Heyu ZHAO ; Binqian ZOU ; Junnan LU ; Mei LI ; Xin WEN ; Shenghua GAO ; Peng ZHAN ; Lijun RONG ; Liqiang FENG ; Peng GONG ; Jun HE ; Xinwen CHEN ; Xiaoli XIONG
Protein & Cell 2025;16(8):705-723
Nipah virus (NiV) and related viruses form a distinct henipavirus genus within the Paramyxoviridae family. NiV continues to spillover into the humans causing deadly outbreaks with increasing human-bat interaction. NiV encodes the large protein (L) and phosphoprotein (P) to form the viral RNA polymerase machinery. Their sequences show limited homologies to those of non-henipavirus paramyxoviruses. We report two cryo-electron microscopy (cryo-EM) structures of the Nipah virus (NiV) polymerase L-P complex, expressed and purified in either its full-length or truncated form. The structures resolve the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L protein, as well as a tetrameric P protein bundle bound to the L-RdRp domain. L-protein C-terminal regions are unresolved, indicating flexibility. Two PRNTase domain zinc-binding sites, conserved in most Mononegavirales, are confirmed essential for NiV polymerase activity. The structures further reveal anchoring of the P protein bundle and P protein X domain (XD) linkers on L, via an interaction pattern distinct among Paramyxoviridae. These interactions facilitate binding of a P protein XD linker in the nucleotide entry channel and distinct positioning of other XD linkers. We show that the disruption of the L-P interactions reduces NiV polymerase activity. The reported structures should facilitate rational antiviral-drug discovery and provide a guide for the functional study of NiV polymerase.
Nipah Virus/chemistry*
;
Cryoelectron Microscopy
;
Viral Proteins/genetics*
;
RNA-Dependent RNA Polymerase/genetics*
;
Phosphoproteins/genetics*
;
Humans
;
Models, Molecular
;
Protein Binding
5.Endo-beta-N-acetylglucosaminidase: Possible Functions and Mechanisms
Xin-Rong LU ; Yong-Liang TONG ; Wei-Li KONG ; Lin ZOU ; Dan-Feng SHEN ; Shao-Xian LÜ ; Rui-Jie LIU ; Shao-Xing ZHANG ; Yu-Xin ZHANG ; Lin-Lin HOU ; Gui-Qin SUN ; Li CHEN
Progress in Biochemistry and Biophysics 2024;51(5):985-999
Endo-beta-N-acetylglucosaminidase (ENGase) is widely distributed in various organisms. The first reported ENGase activity was detected in Diplococcus pneumoniae in 1971. The protein (Endo D) was purified and its peptide sequence was determined in 1974. Three ENGases (Endo F1-F3) were discovered in Flavobacterium meningosepticum from 1982 to 1993. After that, the activity was detected from different species of bacteria, yeast, fungal, plant, mice, human, etc. Multiple ENGases were detected in some species, such as Arabidopsis thaliana and Trichoderma atroviride. The first preliminary crystallographic analysis of ENGase was conducted in 1994. But to date, only a few ENGases structures have been obtained, and the structure of human ENGase is still missing. The currently identified ENGases were distributed in the GH18 or GH85 families in Carbohydrate-Active enZyme (CAZy) database. GH18 ENGase only has hydrolytic activity, but GH85 ENGase has both hydrolytic and transglycosylation activity. Although ENGases of the two families have similar (β/α)8-TIM barrel structures, the active sites are slightly different. ENGase is an effective tool for glycan detection andglycan editing. Biochemically, ENGase can specifically hydrolyze β‑1,4 glycosidic bond between the twoN-acetylglucosamines (GlcNAc) on core pentasaccharide presented on glycopeptides and/or glycoproteins. Different ENGases may have different substrate specificity. The hydrolysis products are oligosaccharide chains and a GlcNAc or glycopeptides or glycoproteins with a GlcNAc. Conditionally, it can use the two products to produce a new glycopeptides or glycoprotein. Although ENGase is a common presentation in cell, its biological function remains unclear. Accumulated evidences demonstrated that ENGase is a none essential gene for living and a key regulator for differentiation. No ENGase gene was detected in the genomes of Saccharomyces cerevisiae and three other yeast species. Its expression was extremely low in lung. As glycoproteins are not produced by prokaryotic cells, a role for nutrition and/or microbial-host interaction was predicted for bacterium produced enzymes. In the embryonic lethality phenotype of the Ngly1-deficient mice can be partially rescued by Engase knockout, suggesting down regulation of Engase might be a solution for stress induced adaptation. Potential impacts of ENGase regulation on health and disease were presented. Rabeprazole, a drug used for stomach pain as a proton inhibitor, was identified as an inhibitor for ENGase. ENGases have been applied in vitro to produce antibodies with a designated glycan. The two step reactions were achieved by a pair of ENGase dominated for hydrolysis of substrate glycoprotein and synthesis of new glycoprotein with a free glycan of designed structure, respectively. In addition, ENGase was also been used in cell surface glycan editing. New application scenarios and new detection methods for glycobiological engineering are quickly opened up by the two functions of ENGase, especially in antibody remodeling and antibody drug conjugates. The discovery, distribution, structure property, enzymatic characteristics and recent researches in topical model organisms of ENGase were reviewed in this paper. Possible biological functions and mechanisms of ENGase, including differentiation, digestion of glycoproteins for nutrition and stress responding were hypothesised. In addition, the role of ENGase in glycan editing and synthetic biology was discussed. We hope this paper may provide insights for ENGase research and lay a solid foundation for applied and translational glycomics.
6.Effect of Pax6 gene expression on hydrogen peroxide-induced aging in bone marrow mesenchymal stem cells
Jie GAO ; Xingxing ZOU ; Banghong WEN ; Yuandi LI ; Min SU ; Rong HU
Chinese Journal of Tissue Engineering Research 2024;28(31):4921-4925
BACKGROUND:The occurrence and development of various ophthalmic diseases are closely related to excessive oxidative stress,and the inhibition of oxidative stress response may produce preventive and therapeutic effects. OBJECTIVE:To explore the role of Pax6 gene expression on hydrogen peroxide-induced aging of mouse bone marrow mesenchymal stem cells(BM-MSCs). METHODS:Resuscitated BM-MSCs,Pax6/BM-MSCs,and shPax6/BM-MSCs were treated with hydrogen peroxide for 24 hours,and then β-galactosidase staining was performed.The proliferation index Ki67 expression and apoptosis were detected by flow cytometry.The expression of senescence-associated molecules(Wnt7a,p21,and p53)was detected by RT-PCR. RESULTS AND CONCLUSION:(1)After hydrogen peroxide treatment,the cells of the three groups showed senescence phenotype and β-galactosidase staining was positive.Compared with BM-MSCs group,the expression of positive cells in Pax6/BM-MSCs group was less and that in the shPax6/BM-MSCs group was more,and the difference was statistically significant(P<0.05).(2)The results of flow cytometry showed that compared with BM-MSCs group,the positive expression of Ki67 in the Pax6/BM-MSCs group increased and the level of apoptosis decreased,while the positive expression of Ki67 decreased and the level of apoptosis increased in the shPax6/BM-MSCs group;the difference was significantly different(P<0.05).(3)RT-PCR showed that compared with the BM-MSCs group,the expression of Wnt7a,p53,and p21 decreased in the Pax6/BM-MSCs group,while the expression of Wnt7a,p53,and p21 increased in the shPax6/BM-MSCs group;the difference was significantly different(P<0.05).(4)These findings indicate that overexpression of Pax6 can antagonize the aging progression of BM-MSCs induced by hydrogen peroxide,which may be related to Wnt signaling pathway.
7.Evaluation on the effect of applying comprehensive interventions on pro-moting pathogen detection before antimicrobial therapy in hospitalized pa-tients
ZHUYi ; Jian-Wen ZHUANG ; Ying-Ying PAN ; Li-Na ZOU ; Yu-Rong HUANG
Chinese Journal of Infection Control 2024;23(5):600-604
Objective To explore the effect of applying comprehensive interventions on promoting pathogen detec-tion before antimicrobial therapy in hospitalized patients.Methods Hospitalized patients who received therapeutic use of antimicrobial agents in a tertiary first-class hospital from January 2020 to December 2021 were selected as the research subjects.Comprehensive intervention measures were implemented from January 2021.The pathogen detec-tion rates,detection classification,and detection rates of key monitored departments before antimicrobial therapy were compared between the pre-intervention group(January-December 2020)and the post-intervention group(Janu-ary-December 2021).Results A total of 10 239 hospitalized patients who received therapeutic use of antimicrobial agents were included in analysis,4 526 cases were in the pre-intervention group and 5 713 cases in the post-interven-tion group.The pathogen detection rates before antimicrobial therapy,before restricted grade antimicrobial therapy,and before special grade antimicrobial therapy after intervention were 94.56%,94.72%,and 96.03%,respective-ly,which were higher than 83.74%,84.47%,and 84.95%before intervention,with statistical significance(all P<0.05).The detection rate of targeted pathogens after intervention was 64.87%,higher than that before interven-tion(28.04%),with statistically significant difference(P<0.05).The pathogen detection rates before therapeutic use of antimicrobial agents in departments of critical care medicine,pulmonary and critical care medicine,pediatrics,neurosurgery,and general surgery after intervention were 93.20%,91.17%,92.20%,94.12%,and 91.15%,re-spectively,higher than the rates before intervention,namely 85.00%,82.19%,83.20%,83.33%,and 83.03%,respectively,with statistical significance(all P<0.05).Conclusion The application of comprehensive intervention measures can improve the pathogen detection rate before antimicrobial therapy of hospitalized patients.Close atten-tion should be paid to the pathogen detection indicators related to healthcare-associated infection diagnosis and for the detection of sterile body fluid.
8.Research on bed efficiency in public hospitals under DRG background
Yujie ZHANG ; Hao XU ; Ao ZOU ; Li XU ; Rong HU ; Chenhui LIU
Modern Hospital 2024;24(7):1066-1069,1074
Objective To analyze the bed utilization efficiency of various clinical departments in a public hospital and provide reference for the rational allocation of departmental bed resources.Methods Based on the data from a tertiary specialized hospital in 2022,traditional bed efficiency indicators were used as the basis.The Case Mix Index(CMI)was introduced for ad-justment,and the reasonable range of beds for each department was calculated.Data Envelopment Analysis(DEA)was em-ployed to comprehensively evaluate the input-output efficiency of each clinical department and determine the direction for optimi-zing bed allocation.Results Among the 39 departments included in the study,10 departments had inappropriate bed settings.Among them,5 departments needed additional beds,while 5 departments needed to reduce the number of beds.Conclusion By adjusting the bed efficiency indicators using CMI and combining the DEA method,hospitals can obtain a scientific basis for dy-namically adjusting the number of beds in clinical departments.Hospitals should make rational use of bed resources and scientifi-cally plan departmental beds.
9.Effects of Xihuang Pills on angiogenesis, invasion, and metastasis of p rostate cancer based on FAK/Src/ERK pathway.
Yan LONG ; Xin-Jun LUO ; Bo ZOU ; Xin-Jun DAI ; Fang-Zhi FU ; Biao WANG ; Li-Tong WU ; Yong-Rong WU ; Qing ZHOU ; Xue-Fei TIAN
China Journal of Chinese Materia Medica 2024;49(23):6378-6388
Based on the focal adhesion kinase(FAK)/steroid receptor coactivator(Src)/extracellular regulated protein kinase(ERK) pathway, this study explored the effects of Xihuang Pills on angiogenesis, invasion, and metastasis in prostate cancer. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) was used to analyze and identify the active ingredients of Xihuang Pills. Bioinformatics techniques, including R language and Perl programs, were employed to analyze the interactions between prostate cancer-related targets and the potential targets of Xihuang Pills. A subcutaneous transplantation tumor model of prostate cancer was established in nude mice using PC3 cells to verify the efficacy and molecular mechanisms of Xihuang Pills. In vitro cellular experiments, including cell proliferation assays(CCK-8), Transwell assays, scratch assays, real-time quantitative reverse transcription PCR, and Western blot, were used to detect the effects of Xihuang Pills on the proliferation, invasion, and migration of prostate cancer cells, as well as on FAK/Src/ERK pathway-related targets. LC-MS/MS identified 99 active ingredients in Xihuang Pills, including gallic acid, gentisic acid, artemisinin, corilagin, phenylbutazone-glucoside, thujic acid, and arecoic acid B. Network pharmacological analysis of the active ingredients in Xihuang Pills revealed that the FAK/Src/ERK signaling pathway was a key pathway in its anti-prostate cancer effects. In vivo and in vitro experiments confirmed that Xihuang Pills significantly inhibited the proliferation, invasion, and migration of PC3 and LNCaP cells, suppressed the growth of PC3 subcutaneous tumors, and reduced the protein expression levels related to the FAK/Src/ERK signaling pathway. In conclusion, the inhibition of angiogenesis, invasion, and metastasis by regulating the FAK/Src/ERK pathway is one of the mechanisms by which Xihuang Pills exert anti-prostate cancer effects.
Humans
;
Male
;
Prostatic Neoplasms/enzymology*
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Nude
;
Cell Movement/drug effects*
;
Cell Line, Tumor
;
src-Family Kinases/genetics*
;
Neovascularization, Pathologic/metabolism*
;
Neoplasm Metastasis
;
Neoplasm Invasiveness
;
Focal Adhesion Kinase 1/genetics*
;
Extracellular Signal-Regulated MAP Kinases/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Focal Adhesion Protein-Tyrosine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Angiogenesis
10.Isoliquiritigenin induces HMOX1 and GPX4-mediated ferroptosis in gallbladder cancer cells.
Zeyu WANG ; Weijian LI ; Xue WANG ; Qin ZHU ; Liguo LIU ; Shimei QIU ; Lu ZOU ; Ke LIU ; Guoqiang LI ; Huijie MIAO ; Yang YANG ; Chengkai JIANG ; Yong LIU ; Rong SHAO ; Xu'an WANG ; Yingbin LIU
Chinese Medical Journal 2023;136(18):2210-2220
BACKGROUND:
Gallbladder cancer (GBC) is the most common malignant tumor of biliary tract. Isoliquiritigenin (ISL) is a natural compound with chalcone structure extracted from the roots of licorice and other plants. Relevant studies have shown that ISL has a strong anti-tumor ability in various types of tumors. However, the research of ISL against GBC has not been reported, which needs to be further investigated.
METHODS:
The effects of ISL against GBC cells in vitro and in vivo were characterized by cytotoxicity test, RNA-sequencing, quantitative real-time polymerase chain reaction, reactive oxygen species (ROS) detection, lipid peroxidation detection, ferrous ion detection, glutathione disulphide/glutathione (GSSG/GSH) detection, lentivirus transfection, nude mice tumorigenesis experiment and immunohistochemistry.
RESULTS:
ISL significantly inhibited the proliferation of GBC cells in vitro . The results of transcriptome sequencing and bioinformatics analysis showed that ferroptosis was the main pathway of ISL inhibiting the proliferation of GBC, and HMOX1 and GPX4 were the key molecules of ISL-induced ferroptosis. Knockdown of HMOX1 or overexpression of GPX4 can reduce the sensitivity of GBC cells to ISL-induced ferroptosis and significantly restore the viability of GBC cells. Moreover, ISL significantly reversed the iron content, ROS level, lipid peroxidation level and GSSG/GSH ratio of GBC cells. Finally, ISL significantly inhibited the growth of GBC in vivo and regulated the ferroptosis of GBC by mediating HMOX1 and GPX4 .
CONCLUSION
ISL induced ferroptosis in GBC mainly by activating p62-Keap1-Nrf2-HMOX1 signaling pathway and down-regulating GPX4 in vitro and in vivo . This evidence may provide a new direction for the treatment of GBC.
Animals
;
Mice
;
Carcinoma in Situ
;
Chalcones/pharmacology*
;
Ferroptosis
;
Gallbladder Neoplasms/genetics*
;
Glutathione Disulfide
;
Kelch-Like ECH-Associated Protein 1
;
Mice, Nude
;
NF-E2-Related Factor 2/genetics*
;
Reactive Oxygen Species
;
Humans

Result Analysis
Print
Save
E-mail