1.Combined Therapy of Traditional Chinese and Western Medicine for Hepatitis B Virus Infection: A Review
Xuan WU ; Hui LI ; Jian HUANG ; Xikun YANG ; Yan ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):279-288
Hepatitis B virus (HBV) infection is the primary cause of viral hepatitis and represents a substantial disease burden in China. However, effective and safe agents capable of completely eliminating HBV DNA are still lacking. In modern medicine, anti-HBV strategies mainly target covalently closed circular DNA (cccDNA), among other mechanisms, and multiple novel drugs are currently under clinical investigation. Traditional medicine has been shown to exert anti-HBV effects through direct pathways, such as blocking viral entry, as well as indirect pathways, including the regulation of programmed cell death. Studies have confirmed that the integration of traditional Chinese medicine (TCM) and Western medicine in treating HBV infection and its related complications offers complementary advantages, particularly in enhancing HBV clearance rates, improving liver function, preventing various complications, and delaying the progression from hepatic fibrosis to hepatocellular carcinoma. This review focuses on advances in anti-HBV research involving TCM, Western medicine, and their integrated application, aiming to provide a basis for integrated HBV therapy and new drug development.
2.Preliminary study on the biological characteristics of heat shock cognate protein 20 of Schistosoma japonicum
Xingang YU ; Kaijian YUAN ; Yilong LI ; Xuanru MU ; Hui XU ; Qiaoyu LI ; Wenjing ZENG ; Zhiqiang FU ; Yang HONG
Chinese Journal of Schistosomiasis Control 2025;37(3):294-303
Objective To clone and express the heat shock cognate protein 20 (SjHsc20) of Schistosoma japonicum, and to preliminarily investigate its biological characteristics. Methods The target fragment of the SjHsc20 gene was amplified using PCR assay and cloned into the pET-28a(+) expression plasmid to generate the recombinant expression vector pET-28a(+)-SjH-sc20, which was then transformed into Escherichia coli BL21 (DE3) competent cells. The recombinant SjHsc20 (rSjHsc20) protein was induced with isopropyl β-D-thiogalactopyranoside (IPTG) and purified, and the expression of the rSjHsc20 protein was checked with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The immunogenicity of the rSjHsc20 protein was detected using Western blotting, and the transcriptional levels of SjHsc20 were quantified in S. japonicum worms at different developmental stages and in male and female adult worms using real-time quantitative PCR (RT-qPCR) assay. Thirty female BALB/c mice at ages 6 to 8 weeks were divided into three groups, including the rSjHsc20 immunization group, the PBS control group, and the ISA 206 adjuvant group, of 10 mice in each group. Mice in the rSjHsc20 immunization group were subcutaneously immunized with 20 μg rSjHsc20 on days 1, 15 and 31, and animals in the PBS control group were subcutaneously injected with the same volume of PBS on days 1, 15 and 31, while mice in the ISA 206 adjuvant group were subcutaneously immunized with the same volume of ISA 206 adjuvant on days 1, 15 and 31, respectively. All mice in each group were infected with (40 ± 2) S. japonicum cercariae via the abdomen 14 day following the last immunization. Levels of serum specific IgG and its subtypes IgG1 and IgG2 antibodies against rSjHsc20, and the serum titers of anti-rSjHsc20 antibody were detected in mice using indirect enzyme-linked immunosorbent assay (ELISA). All mice were sacrifice 42 days post-infection, and S. japonicum worms were collected from the hepatic portal vein and counted. The eggs per gram (EPG), worm burden reductions and egg burden reductions were estimated to evaluate the protective efficacy of the rSjHsc20 protein. Results The SjHsc20 gene had an open reading frame (ORF) with 756 bp in length and encoded 252 amino acids, and the rSjHsc20 protein had a relative molecular mass of approximately 29 kDa. The rSjHsc20 protein was recognized by the serum of mice infected with S. japonicum and the serum of mice immunized with the rSjHsc20 protein, indicating that rSjHsc20 had a good immunogenicity. There was a significant difference in the transcriptional levels of the SjHsc20 gene among the 7-day (1.001 4 ± 0.065 7), 12-day (2.268 3 ± 0.129 2), 21-day (1.378 5 ± 0.160 4), 28-day (1.196 4 ± 0.244 0), 35-day (1.646 3 ± 0.226 1), 42-day worms of S. japonicum (1.758 0 ± 0.611 1) (F = 38.45, P < 0.000 1), and the transcriptional level of the SjHsc20 gene was higher in the 12-day worms than in worms at other developmental stages (all P values < 0.000 1). The serum levels of anti-rSjHsc20 IgG antibody were 0.106 6 ± 0.010 7, 0.108 3 ± 0.010 4, and 0.553 2 ± 0.069 1 in the PBS control group, ISA 206 adjuvant group, and rSjHsc20 immunization group following the last immunization, respectively, and the serum levels of IgG1 antibody were 0.137 3 ± 0.054 0, 0.181 1 ± 0.096 8, and 1.765 8 ± 0.221 1, while the levels of IgG2a antibody were 0.280 3 ± 0.197 6, 0.274 0 ± 0.146 3, and 1.560 4 ± 0.106 0, respectively. There were significant differences in the serum levels of anti-rSjHsc20 IgG (F = 397.70, P < 0.000 1), IgG1 (F = 401.00, P < 0.000 1) and IgG2a antibodies (F = 229.70, P < 0.000 1) among the three groups, and the serum levels of anti-rSjHsc20 IgG, IgG1 and IgG2a antibodies were higher in the rSjHsc20 immunization group than in the PBS control group and the ISA 206 adjuvant group (all P values < 0.000 1). There was a significant difference in the IgG1/IgG2a ratio among the rSjHsc20 immunization group (1.177 2 ± 0.143 6), the PBS control group (0.428 4 ± 0.199 8) and the ISA 206 adjuvant group (0.559 9 ± 0.181 1) (F = 43.97, P < 0.000 1), and the IgG1/IgG2a ratio was > 1 in the rSjHsc20 immunization group, which was higher than in the PBS control group and the ISA 206 adjuvant group (both P values < 0.000 1). The titers of serum anti-rSjHsc20 antibody were all above 1∶16 384 in the rSjHsc20 immunization group following immunizations on days 1, 15 and 31, indicating that the rSjHsc20 protein had a strong immunogenicity. The mean worm burdens were (16.60±5.75), (15.80±5.58) worms per mouse and (14.40±5.75) worms per mouse in the PBS control group, the ISA 206 adjuvant group and the rSjHsc20 immunization group 42 days post-infection with S. japonicum cercariae (F = 0.50, P > 0.05), and the EPG were 68 370 ± 22 690, 67 972 ± 19 502, and 41 075 ± 13 251 in the PBS control group, the ISA 206 adjuvant group and the rSjHsc20 immunization group (F = 4.55, P < 0.05), with lower EPG in the PBS control group and the ISA 206 adjuvant group than in the rSjHsc20 immunization group (both P values < 0.05). Immunization with the rSjHsc20 protein resulted in a worm burden reduction of 13.25% and an egg burden reduction of 39.92% relative to the PBS control group. Conclusions SjHsc20 is successfully cloned and expressed, and the rSjHsc20 protein induces partial immunoprotective effects in mice, which provides a basis for deciphering the biological functions of SjHsc20 and assessing the potential of SjH-sc20 as a vaccine candidate.
3.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
4.Mini-barcode development based on chloroplast genome of Descurainiae Semen Lepidii Semen and its adulterants and its application in Chinese patent medicine.
Hui LI ; Yu-Jie ZENG ; Xin-Yi LI ; ABDULLAH ; Yu-Hua HUANG ; Ru-Shan YAN ; Rui SHAO ; Yu WANG ; Xiao-Xuan TIAN
China Journal of Chinese Materia Medica 2025;50(7):1758-1769
Descurainiae Semen Lepidii Semen, also known as Tinglizi, originates from Brassicaceae plants Descurainia sophia or Lepidium apetalum. The former is commonly referred to as "Southern Tinglizi(Descurainiae Semen)", while the latter is known as "Northern Tinglizi(Lepidii Semen)". To scientifically and accurately identify the origin of Tinglizi medicinal materials and traditional Chinese medicine products, this study developed a specific DNA mini-barcode based on chloroplast genome sequences. By combining the DNA mini-barcode with DNA metabarcoding technology, a method for the qualitative and quantitative identification of Tinglizi medicinal materials and Chinese patent medicines was established. In this study, chloroplast genomes of Southern Tinglizi and Northern Tinglizi and seven commonly encountered counterfeit products were downloaded from the GenBank database. Suitable polymorphic regions were identified to differentiate these species, enabling the development of the DNA mini-barcode. Using DNA metabarcoding technology, medicinal material mixtures of Southern and Northern Tinglizi, as well as the most common counterfeit product, Capsella bursa-pastoris seeds, were analyzed to validate the qualitative and quantitative capabilities of the mini-barcode and determine its minimum detection limit. Additionally, the mini-barcode was applied to Chinese patent medicines containing Tinglizi to authenticate their botanical origin. The results showed that the developed mini-barcode(psbB) exhibited high accuracy and specificity, effectively distinguishing between the two authentic origins of Tinglizi and commonly encountered counterfeit products. The analysis of mixtures demonstrated that the mini-barcode had excellent qualitative and quantitative capabilities, accurately identifying the composition of Chinese medicinal materials in mixed samples with varying proportions. Furthermore, the analysis of Chinese patent medicines revealed the presence of the adulterant species(Capsella bursa-pastoris) in addition to the authentic species(Southern and Northern Tinglizi), indicating the occurrence of adulteration in commercially available Tinglizi-containing products. This study developed a method for the qualitative and quantitative identification of multi-origin Chinese medicinal materials and related products, providing a model for research on other multi-origin Chinese medicinal materials.
DNA Barcoding, Taxonomic/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Contamination
;
Genome, Chloroplast
;
Medicine, Chinese Traditional
5.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
6.Research progress on the role of efferocytosis in liver diseases.
Kaixin WANG ; Hui LI ; Haijian DONG ; Qun NIU ; Xikun YANG ; Xiaoyan ZENG ; Xuan WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):71-76
Efferocytosis refers to the process of phagocytes engulfing and clearing the cells after programmed cell death. In recent years, an increasing number of studies have shown that the mechanisms of efferocytosis are closely related to drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, cholestatic liver diseases, metabolic-associated fatty liver disease, alcoholic liver disease, and other liver disorders. This review summarized the research progress on the role of efferocytosis in liver diseases, with the hope of providing new targets for the prevention and treatment of liver diseases.
Humans
;
Liver Diseases/metabolism*
;
Animals
;
Phagocytosis/physiology*
;
Phagocytes
;
Efferocytosis
7.Cardiofaciocutaneous syndrome caused by microdeletion of chromosome 19p13.3: a case report and literature review.
Cui-Yun LI ; Ying XU ; Ru-En YAO ; Ying YU ; Xue-Ting CHEN ; Wei LI ; Hui ZENG ; Li-Ting CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(7):854-858
This article reports a child with cardioaciocutaneous syndrome (CFCS) caused by a rare microdeletion of chromosome 19p13.3, and a literature review is conducted. The child had unusual facies, short stature, delayed mental and motor development, macrocephaly, and cardiac abnormalities. Whole-exome sequencing identified a 1 040 kb heterozygous deletion in the 19p13.3 region of the child, which was rated as a "pathogenic variant". This is the first case of CFCS caused by a loss-of-function mutation reported in China, which enriches the genotype characteristics of CFCS. It is imperative to enhance the understanding of CFCS in children. Early identification based on its clinical manifestations should be pursued, and genetic testing should be performed to facilitate diagnosis.
Humans
;
Chromosome Deletion
;
Chromosomes, Human, Pair 19/genetics*
;
Ectodermal Dysplasia/genetics*
;
Facies
;
Failure to Thrive/genetics*
;
Heart Defects, Congenital/genetics*
8.Dual activation of GCGR/GLP1R signaling ameliorates intestinal fibrosis via metabolic regulation of histone H3K9 lactylation in epithelial cells.
Han LIU ; Yujie HONG ; Hui CHEN ; Xianggui WANG ; Jiale DONG ; Xiaoqian LI ; Zihan SHI ; Qian ZHAO ; Longyuan ZHOU ; JiaXin WANG ; Qiuling ZENG ; Qinglin TANG ; Qi LIU ; Florian RIEDER ; Baili CHEN ; Minhu CHEN ; Rui WANG ; Yao ZHANG ; Ren MAO ; Xianxing JIANG
Acta Pharmaceutica Sinica B 2025;15(1):278-295
Intestinal fibrosis is a significant clinical challenge in inflammatory bowel diseases, but no effective anti-fibrotic therapy is currently available. Glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP1R) are both peptide hormone receptors involved in energy metabolism of epithelial cells. However, their role in intestinal fibrosis and the underlying mechanisms remain largely unexplored. Herein GCGR and GLP1R were found to be reduced in the stenotic ileum of patients with Crohn's disease as well as in the fibrotic colon of mice with chronic colitis. The downregulation of GCGR and GLP1R led to the accumulation of the metabolic byproduct lactate, resulting in histone H3K9 lactylation and exacerbated intestinal fibrosis through epithelial-to-mesenchymal transition (EMT). Dual activating GCGR and GLP1R by peptide 1907B reduced the H3K9 lactylation in epithelial cells and ameliorated intestinal fibrosis in vivo. We uncovered the role of GCGR/GLP1R in regulating EMT involved in intestinal fibrosis via histone lactylation. Simultaneously activating GCGR/GLP1R with the novel dual agonist peptide 1907B holds promise as a treatment strategy for alleviating intestinal fibrosis.
9.Compound Centella asiatica formula alleviates Schistosoma japonicum-induced liver fibrosis in mice by inhibiting the inflammation-fibrosis cascade via regulating the TLR4/MyD88 pathway.
Liping GUAN ; Yan YAN ; Xinyi LU ; Zhifeng LI ; Hui GAO ; Dong CAO ; Chenxi HOU ; Jingyu ZENG ; Xinyi LI ; Yang ZHAO ; Junjie WANG ; Huilong FANG
Journal of Southern Medical University 2025;45(6):1307-1316
OBJECTIVES:
To explore the therapeutic mechanism of compound Centella asiatica formula (CCA) for alleviating Schistosoma japonicum (Sj)-induced liver fibrosis in mice.
METHODS:
The active components and targets of CCA were identified using the TCMSP database with cross-analysis of Sj-related liver fibrosis targets. A "drug-component-target-pathway-disease" network was constructed using Cytoscape 3.9.1. Functional enrichment analysis (GO/KEGG) was performed using DAVID. Molecular docking study was carried out to validate interactions between the core targets and the key compounds. For experimental validation of the results, 36 mice were divided into control group, Sj-infected model group, and CCA-treated groups. In the latter two groups, liver fibrosis was induced via abdominal infection with Sj cercariae for 8 weeks, followed by 8 weeks of daily treatment with CCA decoction or saline. Hepatic pathology of the mice was assessedwith HE and Masson staining, and hepatic expressions of collagen-I and collagen-III were detected using immunohistochemistry; serum IL-6 and TNF-α levels were determined with ELISA. Hepatic expressions of TLR4 and MyD88 proteins were analyzed with Western blotting.
RESULTS:
We identified a total of 107 bioactive CCA components and 791 targets, including 37 intersection targets linked to Sj-induced fibrosis. The core targets included TNF, TP53, JUN, MMP9, and CXCL8, involving the IL-17 signaling, lipid metabolism, TLR4/MyD88 axis, and cancer pathways. Molecular docking study confirmed strong binding affinity between quercetin (a primary CCA component) and TNF/TP53/JUN/MMP9. In Sj-infected mouse models, CCA treatment significantly attenuated hepatic inflammatory cell infiltration, reduced collagen-I and collagen-III deposition, improved tissue architecture, reduced serum IL-6 and TNF-α levels, and downregulated TLR4 and MyD88 expressions in the liver.
CONCLUSIONS
CCA mitigates Sj-induced liver fibrosis by targeting TNF, TP53, JUN, and MMP9 to modulate the TLR4/MyD88 pathway, thereby suppressing pro-inflammatory cytokine release, inhibiting hepatic stellate cell activation, reducing collagen deposition, and preventing granuloma formation in the liver.
Animals
;
Toll-Like Receptor 4/metabolism*
;
Mice
;
Myeloid Differentiation Factor 88/metabolism*
;
Schistosoma japonicum
;
Liver Cirrhosis/parasitology*
;
Schistosomiasis japonica
;
Signal Transduction
;
Molecular Docking Simulation
;
Inflammation
;
Centella/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
10.A Novel Model of Traumatic Optic Neuropathy Under Direct Vision Through the Anterior Orbital Approach in Non-human Primates.
Zhi-Qiang XIAO ; Xiu HAN ; Xin REN ; Zeng-Qiang WANG ; Si-Qi CHEN ; Qiao-Feng ZHU ; Hai-Yang CHENG ; Yin-Tian LI ; Dan LIANG ; Xuan-Wei LIANG ; Ying XU ; Hui YANG
Neuroscience Bulletin 2025;41(5):911-916

Result Analysis
Print
Save
E-mail