1.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
2.Analysis of Animal Models of Dry Age-related Macular Degeneration Based on Clinical Disease-syndrome Characteristics of Traditional Chinese and Western Medicine
Xiaoyu LI ; Lina LIANG ; Yun GAO ; Jiahao LI ; Jianying YANG ; Xiaoshan ZHANG ; Honghao BI ; Menglu MIAO ; Huiyi GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):191-197
ObjectiveAge-related macular degeneration (AMD) is one of the leading causes of low vision and blindness in people over 50 years old, and dry AMD (dAMD) is one type for which there is currently no clear treatment. On the basis of the diagnosis and clinical characteristics of dAMD in traditional Chinese and Western medicine, this paper evaluated the fitting degrees of existing animal models of dAMD with clinical characteristics according to the evaluation methods of animal models, and put forward suggestions and prospects. MethodsLiterature on animal models of dAMD was searched against database, and the characteristics of the models were assigned according to the diagnosis criteria of diseases and syndromes of traditional Chinese and Western medicine, and the fitting degrees of the models with clinical characteristics were analyzed and evaluated. ResultsAt present, the animal models of dAMD are mainly established targeting complement factors, chemokines, oxidative damage, lipid/glucose metabolism, and natural strains. Most of the models can simulate the major pathological changes of dAMD, showing the fitting degree of 25%-50% with clinical characteristics in Western medicine. However, the evaluation of traditional Chinese medicine (TCM) syndromes, especially the evaluation of secondary syndromes, is missing, and the models present low fitting degrees with the clinical characteristics in TCM. ConclusionExisting animal models of dAMD are mostly established under the guidance of Western diagnostic standards, which reproduce the main disease characteristics of Western medicine and lack observation of TCM syndromes. Future studies can pay attention to the intervention factors and evaluation systems of spleen deficiency Qi deficiency and liver-kidney Yin deficiency syndrome and build the animal model of dAMD with integration of disease and syndrome based on clinical characteristics of traditional Chinese and Western medicine.
3.Myocardial Metabolomics Reveals Mechanism of Shenfu Injection in Ameliorating Energy Metabolism Remodeling in Rat Model of Chronic Heart Failure
Xinyue NING ; Zhenyu ZHAO ; Mengna ZHANG ; Yang GUO ; Zhijia XIANG ; Kun LIAN ; Zhixi HU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):178-186
ObjectiveTo examine the influences of Shenfu injection on the endogenous metabolic byproducts in the myocardium of the rat model exhibiting chronic heart failure, thus deciphering the therapeutic mechanism of the Qi-reinforcing and Yang-warming method. MethodsSD rats were randomly allocated into a control group and a modeling group. Chronic heart failure with heart-Yang deficiency syndrome in rats was modeled by multi-point subcutaneous injection of isoproterenol, and the rats were fed for 14 days after modeling. The successfully modeled rats were randomized into model, Shenfu injection (6.0 mL·kg-1), and trimetazidine (10 mg·kg-1) groups and treated with corresponding agents for 15 days. The control group and the model group were injected with equal doses of normal saline, and the samples were collected after the intervention was completed. Cardiac color ultrasound was performed. Hematoxylin-eosin (HE) staining was used to observe histopathological morphology, and the serum level of N-terminal pro-brain natriuretic peptide (NT-proBNP) was assessed by enzyme-linked immunosorbent assay (ELISA). The mitochondrial morphological and structural changes of cardiomyocytes were observed by transmission electron microscopy, and the metabolic profiling was carried out by ultra high performance liquid chromatography-quantitative exactive-mass spectrometry (UHPLC-QE-MS). Differential metabolites were screened and identified by orthogonal partial least squares-discriminant analysis (OPLS-DA) and other methods, and then the MetaboAnalyst database was used for further screening. The relevant biological pathways were obtained through pathway enrichment analysis. The receiver operating characteristic (ROC) curve was established to evaluate the diagnostic value of each potential biomarker for myocardial injury and the evaluation value for drug efficacy. ResultsThe results of color ultrasound showed that Shenfu Injection improved the cardiac function indexes of model rats (P<0.05). The results of HE staining showed that Shenfu injection effectively alleviated the pathological phenomena such as myocardial tissue structure disorder and inflammatory cell infiltration in model rats. The results of ELISA showed that Shenfu injection effectively regulated the serum NT-proBNP level in the model rats. Transmission electron microscopy (TEM) showed that Shenfu injection effectively restored the mitochondrial morphological structure. The results of metabolomics showed that the metabolic phenotypes of myocardial samples presented markedly differences between groups. Nine differential metabolites could be significantly reversed in the Shenfu injection group, involving three metabolic pathways: pyruvate metabolism, histidine metabolism, and citric acid cycle (TCA cycle). The results of ROC analysis showed that the area under the curve (AUC) values of all metabolites were between 0.75 and 1.0, indicating that the differential metabolites had high diagnostic accuracy for myocardial injury, and the changes in their expression levels could be used as potential markers for efficacy evaluation. ConclusionShenfu injection significantly alleviated the damage of cardiac function, myocardium, and mitochondrial structure in the rat model of chronic heart failure with heart-Yang deficiency syndrome by ameliorating energy metabolism remodeling. Reinforcing Qi and warming Yang is a key method for treating chronic heart failure with heart-Yang deficiency syndrome.
4.Expert recommendations on vision friendly built environments for myopia prevention and control in children and adolescents
Chinese Journal of School Health 2026;47(1):1-5
Abstract
The prevention and control of myopia in Chinese children and adolescents has become a major public health issue. While maintaining increased outdoor activity as a cornerstone intervention, there is an urgent need to explore new complementary approaches that can be effectively implemented in both indoor and outdoor settings. In recent years, environmental spatial frequency has gained increasing attention as one of the key environmental factors influencing the development and progression of myopia. Both animal studies and human research have confirmed that indoor environments lacking mid to high spatial frequency components, often characterized as "visually impoverished", can promote axial elongation and myopia through mechanisms such as disruption of retinal neural signaling, impaired accommodative function, and altered expression of related molecules. Based on the scientific consensus, it is recommended that "enriching of environmental spatial frequency" should be integrated into the myopia prevention and control framework. Following the principles of schoolled organization, family cooperation, community involvement, and student participation, specific measures are put forward in three areas:optimizing school visual settings, improving home spatial environments, and promoting healthy visual behavior. The aim is to create "visually friendly" indoor environments as an important supplement to outdoor activity, thereby providing a novel perspective and strategy for comprehensively advancing myopia prevention and control among children and adolescents.
5.Protective Effect and Potential Mechanism of Danggui Shaoyaosan on Diabetic Kidney Disease in db/db Mice Based on Endoplasmic Reticulum Stress in Glomerular Endothelial Cells
Ruijia LI ; Zixuan WANG ; Shilong GUO ; Sen YANG ; Jing LI ; Qianqian ZHANG ; Wen DONG ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):28-35
ObjectiveTo investigate the therapeutic efficacy of Danggui Shaoyaosan (DSS) on renal injury in db/db mice and its impact on endoplasmic reticulum stress (ERS) in renal tissues. MethodsThirty 8-week-old male db/db mice and six db/m mice were acclimated for one week, after which urinary microalbumin and blood glucose levels were monitored to establish a diabetic kidney disease (DKD) model. The model mice were randomly divided into a model group, an irbesartan group, and three DSS treatment groups with different doses (16.77, 33.54, and 67.08 g·kg-1·d-1). A normal group was set as control. Each group was intragastrically administered with the corresponding drugs or saline for 8 weeks. After the intervention, general conditions were observed. Serum cystatin C (Cys-C), 24-hour urinary total protein (24 h-UTP), 24-hour urinary microalbumin (24 h-UMA), urinary creatinine (Ucr), and urea nitrogen (UUN) were measured. Transmission electron microscopy (TEM) was used to observe glomerular basement membrane (GBM) and ultrastructural changes of the endoplasmic reticulum (ER) in glomerular endothelial cells. Western blot, real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and immunohistochemistry were used to analyze renal tissue structure and the expression of GRP78, CHOP, and related markers. ResultsCompared with the normal group, the mice in the model group showed curled posture, sluggish response, poor fur condition, increased levels of Cys-C, 24 h-UTP, 24 h-UMA, and UUN (P<0.05), while Ucr decreased (P<0.05). The GBM was significantly thickened, with podocyte and foot process fusion. The protein expressions of GRP78, CHOP, and ATF6 were significantly upregulated (P<0.05), the mRNA levels of GRP78 and CHOP increased (P<0.05), and immunohistochemistry showed an enhanced GRP78 signal (P<0.05). After treatment, the mice exhibited improved behavior, normalized GBM and podocyte structure, improved ER morphology and markedly better biochemical indicators. Western blot, Real-time PCR, and immunohistochemistry indicated that the ERS-related markers were downregulated in the DSS treatment groups (P<0.05), suggesting alleviated ERS and improved renal function. ConclusionDSS can effectively ameliorate renal pathological damage in db/db mice, possibly by regulating ERS in glomerular endothelial cells, although the underlying signaling mechanisms require further investigation.
6.Traditional Chinese Medicine for Hepatocellular Carcinoma Treatment Based on NF-κB Signaling Pathway: A Review
Ren YANG ; Mengge LI ; Zhibo DANG ; Biaobiao GUO ; Shilong LIU ; Zhongqin DANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):327-335
Hepatocellular carcinoma (HCC), the predominant subtype of primary liver cancer, ranks among the top in both incidence and mortality rates of malignant tumors in China. In its early stages, the disease may present with subtle or nonspecific symptoms, often leading to poor clinical prognosis and low patient survival rates, which makes it a significant public health concern. The pathogenesis is associated with multiple factors, including hepatitis virus infection, alcohol consumption, obesity, drug-induced liver injury, and immune disorders, which may interact synergistically to promote disease development. Currently, mainstream therapeutic approaches for HCC in modern medicine encompass surgical resection, liver transplantation, radiofrequency ablation, radiotherapy, and chemotherapy, but they all have certain limitations, such as large side effects and poor prognosis, imposing substantial psychological distress and financial strain on affected individuals. With a rich historical background in hepatic malignancy management, traditional Chinese medicine offers therapeutic benefits characterized by multi-targeted mechanisms, multi-level regulation, minimal adverse effects, and reduced likelihood of disease recurrence. It can not only enhance the curative effect, but also reduce the side effects of radiotherapy, chemotherapy, and surgery. Thus, it has attracted widespread attention. Extensive research has demonstrated that traditional Chinese medicine exhibits significant antitumor properties, along with notable anti-inflammatory and oxidative stress-reducing capabilities, and its mechanism may be related to the regulation of nuclear factor-kappa B (NF-κB) signaling pathway, which can affect multiple stages of hepatocarcinogenesis, such as cell proliferation, invasion, metastasis, and apoptosis. The mechanism of NF-κB signaling pathway in traditional Chinese medicine for HCC treatment has emerged as one of the pivotal research directions in current oncology studies. Based on the existing research foundation, a systematic literature review method was adopted to retrieve and analyze relevant Chinese and English literature in recent years. Integrating the molecular regulatory mechanisms of the NF-κB signaling pathway and its pivotal role in HCC pathogenesis and progression helped further explore the latest research advances in traditional Chinese medicine interventions targeting this pathway for HCC treatment. This approach may provide novel theoretical foundations and translational strategies for the prevention and management of HCC using traditional Chinese medicine.
7.Establishment of a new predictive model for esophagogastric variceal rebleeding in liver cirrhosis based on clinical features
Wen GUO ; Xuyulin YANG ; Run GAO ; Yaxin CHEN ; Kun YIN ; Qian LI ; Manli CUI ; Mingxin ZHANG
Journal of Clinical Hepatology 2026;42(1):101-110
ObjectiveTo establish a new noninvasive, simple, and convenient clinical predictive model by identifying independent predictive factors for rebleeding after endoscopic therapy in cirrhotic patients with esophagogastric variceal bleeding (EGVB), and to provide a basis for individualized risk assessment and development of clinical intervention strategies. MethodsCirrhotic patients with EGVB who were diagnosed and treated in The First Affiliated Hospital of Xi’an Medical University from September 2018 to October 2023 were enrolled as subjects, and according to whether the patient experienced rebleeding within 1 year after endoscopic therapy, they were divided into rebleeding group with 93 patients and non-rebleeding group with 84 patients. Clinical data were collected and analyzed. The independent samples t-test was used for comparison of normally distributed continuous data between two groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between two groups; the chi-square test was used for comparison of categorical data between two groups. A Logistic model was established based on the results of the univariate and multivariate analyses, and the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were used to assess the accuracy of the model. R software was used to visualize the model by plotting a nomogram, and the Bootstrap method was used for internal validation of the model. ResultsThe multivariate analysis showed that red blood cell count (RBC), cholinesterase (ChE), alkaline phosphatase (ALP), albumin (Alb), thrombin time (TT), portal vein trunk diameter, sequential therapy, and primary prevention were independent predictive factors for rebleeding. Based on the results of the multivariate analysis, a logistic model was established as logit(P)=-0.805-1.978×(RBC)+0.001×(ChE)-0.020×(ALP)-0.314×(Alb)+0.567×(TT)+0.428×(portal vein trunk diameter)-2.303×[sequential therapy (yes=1, no=0)]-2.368×[primary prevention (yes=1, no=0)]. The logistic model (AUC=0.928, 95% confidence interval [CI]: 0.893—0.964, P<0.001) had a better performance in predicting rebleeding than MELD score (AUC=0.603, 95%CI: 0.520—0.687, P=0.003), Child-Pugh class (AUC=0.650, 95%CI: 0.578—0.722, P=0.001), and FIB-4 index (AUC=0.587, 95%CI: 0.503—0.671, P=0.045). The model had an optimal cut-off value of 0.607, a sensitivity of 0.817, and a specificity of 0.817. Internal validation confirmed that the model had good predictive performance and accuracy. ConclusionSequential therapy, implementation of primary prevention, an increase in RBC, and an increase in Alb are protective factors against rebleeding, while prolonged TT and widened main portal vein diameter are risk factors. The logistic model based on these independent predictive factors can predict rebleeding and thus holds promise for clinical application.
8.Mechanism of inhibitory effect of total flavonoids from Taraxacum mongolicum on obesity in mice by regulating intestinal flora
Yixue GAO ; Lin GUO ; Linyan LANG ; Jing WU ; Haoyang WANG ; Jing YANG ; Mingsan MIAO ; Zhanzhan LI
China Pharmacy 2025;36(3):293-299
OBJECTIVE To investigate the mechanism of the inhibitory effect of total flavonoids from Taraxacum mongolicum on high-fat diet-induced obesity in mice through modulation of intestinal flora. METHODS Twenty-four C57BL/6J mice were randomly divided into blank group, model group and T. mongolicum total flavonoid group, with 8 mice in each group. Except for the blank group, the other 2 groups were given a high-fat diet, while T. mongolicum total flavonoid group was given T. mongolicum total flavonoid [400 mg/(kg·d)] intragastrically, once a day, for 8 consecutive weeks. During the experiment, the food intake of each group of mice was recorded. After the last medication, the body mass, fat weight, blood lipid level and pathological changes of liver and epididymal fat in mice were evaluated to observe the effect of T. mongolicum total flavonoid on the treatment of obesity in mice. The changes in abundance and structure of intestinal flora in mice were detected by amplicon sequencing; the effects of T. mongolicum total flavonoids on fat metabolism related genes were analyzed by qPCR. RESULTS Compared with model group, the body weight of mice in T. mongolicum total flavonoids group was decreased significantly (P<0.05); the levels of total lipid cholesterol, triglycerides, and LDL cholesterol were all decreased significantly (P<0.01), and the level of HDL cholesterol was increased significantly (P<0.01); the fat indexes of inguinal white adipose tissue and epididymal white wind_lz@hactcm.edu.cn adipose tissue were significantly reduced (P<0.05); significant improvement in hepatocellular steatosis and adipose cytopathy were significantly improved; mRNA expressions of COX7A1 and COX8B were significantly upregulated (P<0.05). The results of bacterial colony detection showed that compared with the model group, there was a rising trend in the diversity of the bacterial colony in T. mongolicum total flavonoids group, and the Sobs index characterization and β diversity were increased significantly (P<0.05). Relative abundances of Blautia, norank_f_Ruminococcaceae, Bilophila, Alistipes, classified_f_Ruminococcaceae, Parabacteroides, norank_f_Desulfovibrionaceae, Anaerotruncus were significantly up-regulated(P<0.05), while those of Faecalibaculum, Erysipelatoclostridium, GCA-900066575, Tuzzerella, Lactobacillus, norank_f_norank_o_RF39, achnospiraceae_FCS020_group were significantly down-regulated (P<0.05). CONCLUSIONS T. mongolicum total flavonoids can reduce body mass, fat weight and blood lipid levels, and repair the pathological damage to liver and epididymal fat in obese mice, which is related to improving intestinal flora disorders caused by high-fat diet.
9.Construction of an artificial intelligence-driven lung cancer database
Libing YANG ; Chao GUO ; Huizhen JIANG ; Lian MA ; Shanqing LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):167-174
Objective To develop an artificial intelligence (AI)-driven lung cancer database by structuring and standardizing clinical data, enabling advanced data mining for lung cancer research, and providing high-quality data for real-world studies. Methods Building on the extensive clinical data resources of the Department of Thoracic Surgery at Peking Union Medical College Hospital, this study utilized machine learning techniques, particularly natural language processing (NLP), to automatically process unstructured data from electronic medical records, examination reports, and pathology reports, converting them into structured formats. Data governance and automated cleaning methods were employed to ensure data integrity and consistency. Results As of September 2024, the database included comprehensive data from 18 811 patients, encompassing inpatient and outpatient records, examination and pathology reports, physician orders, and follow-up information, creating a well-structured, multi-dimensional dataset with rich variables. The database’s real-time querying and multi-layer filtering functions enabled researchers to efficiently retrieve study data that meet specific criteria, significantly enhancing data processing speed and advancing research progress. In a real-world application exploring the prognosis of non-small cell lung cancer, the database facilitated the rapid analysis of prognostic factors. Research findings indicated that factors such as tumor staging and comorbidities had a significant impact on patient survival rates, further demonstrating the database’s value in clinical big data mining. Conclusion The AI-driven lung cancer database enhances data management and analysis efficiency, providing strong support for large-scale clinical research, retrospective studies, and disease management. With the ongoing integration of large language models and multi-modal data, the database’s precision and analytical capabilities are expected to improve further, providing stronger support for big data mining and real-world research of lung cancer.
10.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.


Result Analysis
Print
Save
E-mail