1.Advances in Study on Pharmacological Effects of Epimedium
China Journal of Chinese Materia Medica 2001;26(5):293-295
Objective:To review the progress in the research of the pharmacological activities of active ingredients and extracts of Epimedium.Method:Effects of Epimedium on cardiovascular system, circulatory system, immune system, genital system and bone marrow system, etc were reviewed, based on the recent 10 years pharmacological experimental studies.Conclusion:The results provided a rational foundation for the further development and utilization of Epimedium.
2.Bioengineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition the regulation of target ADME gene expression.
Xin LI ; Ye TIAN ; Mei-Juan TU ; Pui Yan HO ; Neelu BATRA ; Ai-Ming YU
Acta Pharmaceutica Sinica B 2019;9(3):639-647
Drug-metabolizing enzymes, transporters, and nuclear receptors are essential for the absorption, distribution, metabolism, and excretion (ADME) of drugs and xenobiotics. MicroRNAs participate in the regulation of ADME gene expression imperfect complementary Watson-Crick base pairings with target transcripts. We have previously reported that Cytochrome P450 3A4 (CYP3A4) and ATP-binding cassette sub-family G member 2 (ABCG2) are regulated by miR-27b-3p and miR-328-3p, respectively. Here we employed our newly established RNA bioengineering technology to produce bioengineered RNA agents (BERA), namely BERA/miR-27b-3p and BERA/miR-328-3p, fermentation. When introduced into human cells, BERA/miR-27b-3p and BERA/miR-328-3p were selectively processed to target miRNAs and thus knock down and mRNA and their protein levels, respectively, as compared to cells treated with vehicle or control RNA. Consequently, BERA/miR-27b-3p led to a lower midazolam 1'-hydroxylase activity, indicating the reduction of CYP3A4 activity. Likewise, BERA/miR-328-3p treatment elevated the intracellular accumulation of anticancer drug mitoxantrone, a classic substrate of ABCG2, hence sensitized the cells to chemotherapy. The results indicate that biologic miRNA agents made by RNA biotechnology may be applied to research on miRNA functions in the regulation of drug metabolism and disposition that could provide insights into the development of more effective therapies.
3.Discussion on
Chang-Zhen GONG ; Fan-Rong LIANG ; Can-Hui LI ; Wei-Xing PAN ; Yong-Ming LI ; San-Hua LENG ; Arthur Yin FAN ; Song-Ping HAN ; Jing LIU ; Shan WANG ; Zeng-Fu PENG ; Ye-Meng CHEN ; Guan-Hu YANG ; Xu-Ming GU ; Hong SU ; Shao-Bai WANG
Chinese Acupuncture & Moxibustion 2021;41(4):359-364
Professor
Acupuncture
;
Acupuncture Therapy
;
Angina, Stable
;
Combined Modality Therapy
;
Humans
;
Moxibustion
4.Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury.
Dandan LUO ; Weihong GE ; Xiao HU ; Chen LI ; Chia-Ming LEE ; Liqiang ZHOU ; Zhourui WU ; Juehua YU ; Sheng LIN ; Jing YU ; Wei XU ; Lei CHEN ; Chong ZHANG ; Kun JIANG ; Xingfei ZHU ; Haotian LI ; Xinpei GAO ; Yanan GENG ; Bo JING ; Zhen WANG ; Changhong ZHENG ; Rongrong ZHU ; Qiao YAN ; Quan LIN ; Keqiang YE ; Yi E SUN ; Liming CHENG
Protein & Cell 2019;10(8):566-582
The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.
5.A human circulating immune cell landscape in aging and COVID-19.
Yingfeng ZHENG ; Xiuxing LIU ; Wenqing LE ; Lihui XIE ; He LI ; Wen WEN ; Si WANG ; Shuai MA ; Zhaohao HUANG ; Jinguo YE ; Wen SHI ; Yanxia YE ; Zunpeng LIU ; Moshi SONG ; Weiqi ZHANG ; Jing-Dong J HAN ; Juan Carlos Izpisua BELMONTE ; Chuanle XIAO ; Jing QU ; Hongyang WANG ; Guang-Hui LIU ; Wenru SU
Protein & Cell 2020;11(10):740-770
Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.
Adult
;
Aged
;
Aged, 80 and over
;
Aging
;
genetics
;
immunology
;
Betacoronavirus
;
CD4-Positive T-Lymphocytes
;
metabolism
;
Cell Lineage
;
Chromatin Assembly and Disassembly
;
Coronavirus Infections
;
immunology
;
Cytokine Release Syndrome
;
etiology
;
immunology
;
Cytokines
;
biosynthesis
;
genetics
;
Disease Susceptibility
;
Flow Cytometry
;
methods
;
Gene Expression Profiling
;
Gene Expression Regulation, Developmental
;
Gene Rearrangement
;
Humans
;
Immune System
;
cytology
;
growth & development
;
immunology
;
Immunocompetence
;
genetics
;
Inflammation
;
genetics
;
immunology
;
Mass Spectrometry
;
methods
;
Middle Aged
;
Pandemics
;
Pneumonia, Viral
;
immunology
;
Sequence Analysis, RNA
;
Single-Cell Analysis
;
Transcriptome
;
Young Adult
6.Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network.
Yu-Kun XIA ; Yi-Rong ZENG ; Meng-Li ZHANG ; Peng LIU ; Fang LIU ; Hao ZHANG ; Chen-Xi HE ; Yi-Ping SUN ; Jin-Ye ZHANG ; Cheng ZHANG ; Lei SONG ; Chen DING ; Yu-Jie TANG ; Zhen YANG ; Chen YANG ; Pu WANG ; Kun-Liang GUAN ; Yue XIONG ; Dan YE
Protein & Cell 2021;12(7):557-577
Additional sex combs-like 1 (ASXL1) interacts with BRCA1-associated protein 1 (BAP1) deubiquitinase to oppose the polycomb repressive complex 1 (PRC1)-mediated histone H2A ubiquitylation. Germline BAP1 mutations are found in a spectrum of human malignancies, while ASXL1 mutations recurrently occur in myeloid neoplasm and are associated with poor prognosis. Nearly all ASXL1 mutations are heterozygous frameshift or nonsense mutations in the middle or to a less extent the C-terminal region, resulting in the production of C-terminally truncated mutant ASXL1 proteins. How ASXL1 regulates specific target genes and how the C-terminal truncation of ASXL1 promotes leukemogenesis are unclear. Here, we report that ASXL1 interacts with forkhead transcription factors FOXK1 and FOXK2 to regulate a subset of FOXK1/K2 target genes. We show that the C-terminally truncated mutant ASXL1 proteins are expressed at much higher levels than the wild-type protein in ASXL1 heterozygous leukemia cells, and lose the ability to interact with FOXK1/K2. Specific deletion of the mutant allele eliminates the expression of C-terminally truncated ASXL1 and increases the association of wild-type ASXL1 with BAP1, thereby restoring the expression of BAP1-ASXL1-FOXK1/K2 target genes, particularly those involved in glucose metabolism, oxygen sensing, and JAK-STAT3 signaling pathways. In addition to FOXK1/K2, we also identify other DNA-binding transcription regulators including transcription factors (TFs) which interact with wild-type ASXL1, but not C-terminally truncated mutant. Our results suggest that ASXL1 mutations result in neomorphic alleles that contribute to leukemogenesis at least in part through dominantly inhibiting the wild-type ASXL1 from interacting with BAP1 and thereby impairing the function of ASXL1-BAP1-TF in regulating target genes and leukemia cell growth.