1.Quercetin Ameliorates Gouty Arthritis in Rats via ROS/NLRP3/IL-1β Signaling Pathway
Baowei FENG ; Yan WANG ; Chang LI ; Yujing ZHANG ; Dingxing FAN ; Xin LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):145-153
ObjectiveTo investigate the effect of quercetin on acute gouty arthritis (GA) in rats by inhibiting the reactive oxygen species (ROS)/NOD-like receptor protein 3 (NLRP3)/interleukin-1β (IL-1β) signaling pathway. MethodsSixty SPF-grade male SD rats were randomized into normal, model, colchicine (0.3 mg·kg-1), and low-, medium-, and high-dose (25, 50, 100 mg·kg-1, respectively) quercetin groups (n=10). The rats in the dosing groups were administrated with the corresponding drugs (10 mL·kg-1) by gavage once a day for one week. An equal volume of normal saline was given by gavage to rats in normal and model groups. One hour after drug administration on day 5, an acute GA model was established in other groups except the control group via intra-articular injection of monosodium urate (MSU) suspension into the right posterior ankle joint cavity. The joint swelling and gait were scored at the time points of 6, 12, 24, 48 h after modeling. Histopathological alterations in the ankle joint tissue from each group were assessed by hematoxylin-eosin (HE) staining. Malondialdehyde (MDA), xanthine oxidase (XOD), and total superoxide dismutase (T-SOD) assay kits were used to assess the levels of MDA, XOD, and T-SOD in the serum. The levels of tumor interleukin-6 (IL-6), necrosis factor-α (TNF-α), and IL-1β in the rat serum, as well as ROS in the ankle joint tissue, were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was performed to determine the protein levels of NLRP3, thioredoxin-interacting protein (TXNIP), apoptosis-associated speck-like protein containing a CARD domain (ASC), precursor cysteinyl aspartate-specific proteinase-1 (pro-Caspase-1), cleaved Caspase-1 (Caspase-1 p20), and IL-1β in the ankle joint tissue. Real-time PCR was employed to assess the mRNA levels of TXNIP, NLRP3, ASC, IL-1β, and TNF-α in the ankle joint tissue. ResultsCompared with the normal group, the model group exhibited decreased spontaneous activity, mental fatigue, increased ankle joint swelling and gait scores (P<0.01), aggravated synovial tissue edema and inflammatory cell infiltration (P<0.01), elevated levels of XOD, MDA, TNF-α, IL-1β, and IL-6 in the serum and ROS in the joint tissue (P<0.01), a declined level of T-SOD (P<0.01), up-regulated protein levels of NLRP3, TXNIP, ASC, pro-Caspase-1, Caspase-1 p20, and IL-1β in the ankle joint tissue (P<0.01), and up-regulated mRNA levels of NLRP3, TXNIP, ASC, IL-1β, and TNF-α in the ankle joint tissue (P<0.01). Compared with the model group, the medium- and high-dose quercetin groups showed improved general conditions, decreased gait scores (P<0.05, P<0.01), reduced joint swelling (P<0.01), alleviated synovial tissue edema and inflammatory cell infiltration (P<0.05, P<0.01), lowered levels of XOD, MDA, TNF-α, IL-1β, and IL-6 in the serum and ROS in the joint tissue (P<0.01), increased levels of T-SOD (P<0.01), down-regulated protein levels of TXNIP, NLRP3, ASC, pro-Caspase-1, Caspase-1 p20, and IL-1β in the ankle joint tissue (P<0.05, P<0.01), and down-regulated mRNA levels of TXNIP, NLRP3, ASC, IL-1β, and TNF-α in the ankle joint tissue (P<0.01). Low-dose quercetin also ameliorated some of the above parameters (P<0.05, P<0.01). ConclusionQuercetin exerts anti-GA effects by blocking the ROS/NLRP3/IL-1β signaling pathway, downregulating NLRP3 inflammasome activation, and inhibiting the production of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6.
2.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
3.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
4.Multicenter machine learning-based construction of a model for predicting potential organ donors and validation with decision curve analysis
Xu WANG ; Wenxiu LI ; Fenghua WANG ; Shuli WU ; Dong JIA ; Xin GE ; Zhihua SHAN ; Tongzuo LI
Organ Transplantation 2026;17(1):106-115
Objective To evaluate the predictive value of different machine learning models constructed in a multicenter environment for potential organ donors and verify their clinical application feasibility. Methods The study included 2 000 inpatients admitted to five domestic tertiary hospitals from January 2020 to December 2023, who met the criteria for potential organ donation assessment. They were randomly divided into a training set and an internal validation set (7∶3). Another 300 similar patients admitted to the First Affiliated Hospital of Harbin Medical University from January 2024 to April 2025 were included as an external validation set. The area under the curve (AUC), sensitivity, specificity, accuracy and F1-score of three models were compared, and the consistency of the potential organ donor determination process was tested. Multivariate logistic regression analysis was used to identify predictive factors of potential organ donors. Decision curve analysis (DCA) was employed to verify the resource efficiency of each model, and the threshold interval and intervention balance point were assessed. Results Apart from age, there were no significant differences in other basic characteristics among the centers (all P>0.05). The consistency of the potential organ donor determination process among researchers in each center was good [all 95% confidence interval (CI) lower limits >0]. In the internal validation set, the XGBoost model had the best predictive performance (AUC=0.92, 95% CI 0.89-0.94) and the best calibration (P=0.441, Brier score 0.099). In the external validation set, the XGBoost model also had the best predictive performance (AUC=0.91, 95% CI 0.88-0.94), outperforming logistic regression and random forest models. Multivariate logistic regression showed that mechanical ventilation had the greatest impact (odds ratio=2.06, 95% CI 1.54-2.76, P<0.001). DCA indicated that the XGBoost model had the highest net benefit in the threshold interval of 0.2-0.6. The “treat all” strategy only had a slight advantage at extremely low thresholds. The recommended threshold interval, which balances intervention costs and clinical benefits, considers ≥50% positive predictive value (PPV) and ≤50 referrals per 100 high-risk patients. Conclusions The XGBoost model established in a multicenter environment is accurate and well-calibrated in predicting potential organ donors. Combined with DCA, it may effectively guide the timing of clinical interventions and resource allocation, providing new ideas for the assessment and management of organ donation after brain death.
5.Comparison of Wild and Cultivated Gardeniae Fructus Based on Traditional Quality Evaluation
Yuanjun SHANG ; Bo GENG ; Xin CHEN ; Qi WANG ; Guohua ZHENG ; Chun LI ; Zhilai ZHAN ; Junjie HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):225-234
ObjectiveBased on traditional quality evaluation of Gardeniae Fructus(GF) recorded in historical materia medica, this study systematically compared the quality differences between wild and cultivated GF from morphological characteristics, microscopic features, and contents of primary and secondary metabolites. MethodsVernier calipers and analytical balances were used to measure the length, diameter and individual fruit weight of wild and cultivated GF, and the aspect ratio was calculated. A colorimeter was used to determine the chromaticity value of wild and cultivated GF, and the paraffin sections of them were prepared by safranin-fast green staining and examined under an optical microscope to observe their microstructure. Subsequently, the contents of water-soluble and alcohol-soluble extracts of wild and cultivated GF were detected by hot immersion method under the general rule 2201 in volume Ⅳ of the 2020 edition of the Pharmacopoeia of the People's Republic of China, the starch content was measured by anthrone colorimetric method, the content of total polysaccharides was determined by phenol-sulfuric acid colorimetric method, the sucrose content was determined by high performance liquid chromatography coupled with evaporative light scattering detection(HPLC-ELSD), and the contents of representative components in them were measured by ultra-performance liquid chromatography(UPLC). Finally, correlation analysis was conducted between quality traits and phenotypic traits, combined with multivariate statistical analysis methods such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), key differential components between wild and cultivated GF were screened. ResultsIn terms of traits, the wild GF fruits were smaller, exhibiting reddish yellow or brownish red hues with significant variation between batches. While the cultivated GF fruits are larger, displaying deeper orange-red or brownish red. The diameter and individual fruit weight of cultivated GF were significantly greater than those of wild GF, while the blue-yellow value(b*) of wild GF was significantly higher than that of cultivated GF. In the microstructure, the mesocarp of wild GF contained numerous scattered calcium oxalate cluster crystals, while the endocarp contained stone cell class round, polygonal or tangential prolongation, undeveloped seeds were visible within the fruit. In contrast, the mesocarp of cultivated GF contained few calcium oxalate cluster crystals, or some batches exhibited extremely numerous cluster crystals. The stone cells in the endocarp were predominantly round-like, with the innermost layer arranged in a grid pattern. Seeds were basically mature, and only a few immature seeds existed in some batches. Regarding primary metabolite content, wild GF exhibited significantly higher total polysaccharide level than cultivated GF(P<0.01). In category-specific component content, wild GF exhibited significantly higher levels of total flavonoids and total polyphenols compared to cultivated GF(P<0.01). Analysis of 12 secondary metabolites revealed that wild GF exhibited significantly higher levels of Shanzhiside, deacetyl asperulosidic acid methyl ester, gardenoside and chlorogenic acid compared to cultivated GF(P<0.01). Conversely, the contents of genipin 1-gentiobioside, geniposide and genipin were significantly lower in wild GF(P<0.01). ConclusionThere are significant differences between wild and cultivated GF in terms of traits, microstructure, and contents of primary and secondary metabolites. At present, the quality evaluation system of cultivated GF remains incomplete, and this study provides a reference for guiding the production of high-quality GF medicinal materials.
6.Interpretation of Pharmacovigilance Guidelines for Clinical Application of Oral Chinese Patent Medicines
Wenxi PENG ; Meng QIAO ; Lianxin WANG ; Yuanyuan LI ; Xiuhui LI ; Xin CUI ; Zijia CHEN ; Xinyi CHEN ; Yi DENG ; Yanming XIE ; Zhifei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):152-160
The Pharmacovigilance Guidelines for Clinical Application of Oral Chinese Patent Medicines (hereinafter referred to as the Guidelines) is first specialized in the field of drug safety for oral Chinese patent medicines (OCPMs) in China. Rooted in China's healthcare context, the Guidelines address the unique usage patterns and risk characteristics of OCPMs, filling a regulatory gap in the pharmacovigilance framework specific to this category. To facilitate accurate understanding and effective implementation of the Guidelines, and to promote the standardized development of pharmacovigilance practices for OCPMs, this study offered a systematic interpretation based on its three core components. In the domain of risk monitoring and reporting, the paper analyzed the rationale for multi-source information integration and clarified the criteria for identifying key products and target populations for intensive monitoring. Regarding risk assessment, the Guidelines were examined from three dimensions of formulation components, medication behaviors, and population to address complex safety issues arising from medicinal constituents, irrational use, and individual susceptibility. In the area of risk control, the analysis focused on context-based interventions and dynamic closed-loop management strategies, exploring practical pathways to shift from passive response to proactive risk mitigation. Furthermore, this paper evaluated the applied value of the Guidelines and identified implementation challenges, such as insufficient capacity at the primary-care level and limited digital infrastructure. In response, the study proposed optimization strategies including establishing a dynamic updating mechanism, strengthening training at the grassroots level, and incorporating artificial intelligence to enhance pharmacovigilance capacity. This interpretation aims to provide actionable insights for marketing authorization holders (including manufacturers), pharmaceutical distributors, healthcare institutions, and research organizations, ultimately supporting the establishment and refinement of a full lifecycle pharmacovigilance system for OCPMs.
7.Immunity-inflammation Mechanism of Viral Pneumonia and Traditional Chinese Medicine Treatment Based on Theory of Healthy Qi and Pathogenic Qi
Zheyu LUAN ; Hanxiao WANG ; Xin PENG ; Yihao ZHANG ; Yunhui LI ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):239-247
Viral pneumonia is an infectious disease caused by virus invading the lung parenchyma and interstitial tissue and causing lung inflammation, with the incidence rising year by year. Traditional Chinese medicine (TCM) can treat viral pneumonia in a multi-component, multi-target, and holistic manner by targeting the core pathogenesis of pneumonia caused by different respiratory viruses, demonstrating minimal side effects and significant advantages. According to the theory of healthy Qi and pathogenic Qi in TCM, the struggle between healthy Qi and pathogenic Qi and the imbalance between immunity and inflammation run through the entire process of viral pneumonia, and the immunity-inflammation status at different stages of the disease reflects different relationships between healthy Qi and pathogenic Qi. Immune dysfunction leads to the deficiency of healthy Qi, causing viral infections. The struggle between healthy Qi and pathogenic Qi causes immunity-inflammation imbalance, leading to the onset of viral pneumonia. Inflammatory damage causes persistent accumulation of phlegm and stasis, leading to the progression of viral pneumonia. The cytokine storm causes immunodepletion, leading to the excess of pathogenic Qi and diminution of healthy Qi and the deterioration of viral pneumonia. After the recovery from viral pneumonia, there is a long-term imbalance between immunity and micro-inflammation, which results in healthy Qi deficiency and pathogenic Qi lingering. Healthy Qi deficiency and pathogenic Qi excess act as common core causes of pneumonia caused by different respiratory viruses. Clinical treatment should emphasize both replenishing healthy Qi and eliminating pathogenic Qi, helping to restore the balance between healthy Qi and pathogenic Qi as well as between immunity and inflammation, thus promoting the recovery of patients from viral pneumonia. According to the TCM theory of healthy Qi and pathogenic Qi, this article summarizes the immunity-inflammation mechanisms at different stages of viral pneumonia, and explores the application of the method of replenishing healthy Qi and eliminating pathogenic Qi in viral pneumonia. The aim is to probe into the scientific connotation of the TCM theory of healthy Qi and pathogenic Qi in viral pneumonia and provide ideas for the clinical application of the method of replenishing healthy Qi and eliminating pathogenic Qi to assist in the treatment of viral pneumonia.
8.High Expression of INF2 Predicts Poor Prognosis and Promotes Hepatocellular Carcinoma Progression
Hai-Biao WANG ; Man LIN ; Fu-Sang YE ; Jia-Xin SHI ; Hong LI ; Meng YE ; Jie WANG
Progress in Biochemistry and Biophysics 2025;52(1):194-208
ObjectiveINF2 is a member of the formins family. Abnormal expression and regulation of INF2 have been associated with the progression of various tumors, but the expression and role of INF2 in hepatocellular carcinoma (HCC) remain unclear. HCC is a highly lethal malignant tumor. Given the limitations of traditional treatments, this study explored the expression level, clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets. MethodsIn this study, we used public databases to analyze the expression of INF2 in pan-cancer and HCC, as well as the impact of INF2 expression levels on HCC prognosis. Quantitative real time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues. The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples. Subsequently, the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments. Finally, the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments. ResultsINF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival, liver cirrhosis and pathological differentiation of HCC patients. The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC. In vivo and in vitro HCC models, upregulated expression of INF2 triggers the proliferation and migration of the HCC cell, while knockdown of INF2 could counteract this effect. INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression, thus promoting tumor progression. ConclusionINF2 is highly expressed in HCC and is associated with poor prognosis. High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression, and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
9.Molecular biological research and molecular homologous modeling of Bw.03 subgroup
Li WANG ; Yongkui KONG ; Huifang JIN ; Xin LIU ; Ying XIE ; Xue LIU ; Yanli CHANG ; Yafang WANG ; Shumiao YANG ; Di ZHU ; Qiankun YANG
Chinese Journal of Blood Transfusion 2025;38(1):112-115
[Objective] To study the molecular biological mechanism for a case of ABO blood group B subtype, and perform three-dimensional modeling of the mutant enzyme. [Methods] The ABO phenotype was identified by the tube method and microcolumn gel method; the ABO gene of the proband was detected by sequence-specific primer polymerase chain reaction (PCR-SSP), and the exon 6 and 7 of the ABO gene were sequenced and analyzed. Homologous modeling of Bw.03 glycosyltransferase (GT) was carried out by Modeller and analyzed by PyMOL2.5.0 software. [Results] The weakening B antigen was detected in the proband sample by forward typing, and anti-B antibody was detected by reverse typing. PCR-SSP detection showed B, O gene, and the sequencing results showed c.721 C>T mutation in exon 7 of the B gene, resulting in p. Arg 241 Trp. Compared with the wild type, the structure of Bw.03GT was partially changed, and the intermolecular force analysis showed that the original three hydrogen bonds at 241 position disappeared. [Conclusion] Blood group molecular biology examination is helpful for the accurate identification of ambiguous blood group. Homologous modeling more intuitively shows the key site for the weakening of Bw.03 GT activity. The intermolecular force analysis can explain the root cause of enzyme activity weakening.
10.Discussion on the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions
Zilin REN ; Changxiang LI ; Yuxiao ZHENG ; Xin LAN ; Ying LIU ; Yanhui HE ; Fafeng CHENG ; Qingguo WANG ; Xueqian WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):48-54
The purpose of this paper is to explore the decoction and dosing methods of rhubarb root and rhizome in classical prescriptions and to provide a reference basis for the clinical use of rhubarb root and rhizome. By collating the relevant classical prescriptions of rhubarb root and rhizome in Shanghan Lun and Jingui Yaolüe, the relationship between its decoction and dosing methods and the syndrome was analyzed. The decoction of rhubarb root and rhizome in classical prescriptions can be divided into three categories: simultaneous decoction, decoction later, and other methods (impregnation in Mafei decoction, decoction with water from the well spring first taken in the morning, and pills). If it enters the blood level or wants to slow down, rhubarb root and rhizome should be decocted at the same time with other drugs. If it enters the qi level and wants to speed up, rhubarb root and rhizome should be decocted later. If it wants to upwardly move, rhubarb root and rhizome should be immersed in Mafei decoction. If it wants to suppress liver yang, rhubarb root and rhizome should be decocted with water from the well spring first taken in the morning. If the disease is prolonged, rhubarb root and rhizome should be taken in pill form. The dosing methods of rhubarb root and rhizome can be divided into five categories: draught, twice, three times, before meals, and unspecified. For acute and serious illnesses with excess of pathogenic qi and adequate vital qi, we choose draught. For gastrointestinal diseases, we choose to take the medicine twice. For achieving a moderate and long-lasting effect, we choose to take the medicine three times. If the disease is located in the lower part of the heart and abdomen, we choose to take it before meals. The use of rhubarb root and rhizome in clinical practice requires the selection of the appropriate decoction and dosing methods according to the location of the disease, the severity of the disease, the patient′s constitution, and the condition after taking the medicine.


Result Analysis
Print
Save
E-mail