1.Mechanism of Danggui Shaoyaosan in Improving Glomerulosclerosis in db/db Mice via SIRT1/HIF-1α/VLDLr Signaling Pathway
Ruijia LI ; Zixuan WANG ; Shilong GUO ; Jing LI ; Qianqian ZHANG ; Wen DONG ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):11-18
ObjectiveTo investigate the potential mechanism of Danggui Shaoyaosan (DSS) in ameliorating renal injury in db/db mice. MethodsThirty 8-week-old specific pathogen-free (SPF)-grade male db/db mice and six db/m mice were acclimated for one week. Urinary microalbumin and blood glucose levels were measured weekly in both db/db and db/m mice. Successful modeling was determined by significantly higher microalbuminuria in db/db mice compared to db/m mice and a fasting blood glucose ≥16.7 mmol·L-1. The 30 db/db mice were randomly divided into five groups: the model group, the irbesartan (IBN) group, and three DSS dose groups (low-, medium-, and high-dose DSS groups, administered at 16.77, 33.54, 67.08 g·kg-1·d-1, respectively). Additionally, the six db/m mice served as the normal control group. The IBN group received irbesartan at 0.025 g·kg-1·d-1 by gavage, while the three DSS groups received DSS at 16.77, 33.54, and 67.08 g·kg-1·d-1 by gavage, respectively. The normal and model groups were administered with an equivalent volume of normal saline by gavage. All interventions lasted for 8 consecutive weeks. After intervention, serum creatinine (SCr), blood urea nitrogen (BUN), urinary total protein (UTP), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were measured to evaluate the therapeutic efficacy of the treatments. Renal histopathological changes were observed with hematoxylin-eosin (HE) staining. Western blot was used to detect the protein expression of silencing information regulator 1 (SIRT1), hypoxia-inducible factor-1α (HIF-1α), very low-density lipoprotein receptor (VLDLr), and cluster of differentiation 31 (CD31). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA levels of HIF-1α and VLDLr. Immunohistochemistry was used to observe the expression and distribution of HIF-1α and Caspase-3. ResultsCompared to the normal group, the model group showed significantly increased SCr, BUN, UTP, TG, and LDL-C. HE staining revealed glomerulosclerosis, mesangial matrix hyperplasia, capillary loop distortion and thickening, with extensive inflammatory cell infiltration. Protein expression of SIRT1 and CD31 significantly decreased (P<0.05), while HIF-1α and VLDLr protein and mRNA levels increased (P<0.05). Immunohistochemistry showed increased expression of HIF-1α and Caspase-3 (P<0.05), indicating hypoxia and apoptosis in renal cells. In all treatment groups, SCr, BUN, TG, and LDL-C were significantly reduced compared to the model group (P<0.05), and UTP was significantly improved in the medium-dose DSS group (P<0.05). Renal tissue structure and morphology were improved, inflammatory cells were reduced, and no vascular hyaline degeneration was observed. SIRT1 and CD31 protein expression was elevated to varying degrees compared to the model group (P<0.05), while HIF-1α and VLDLr protein and mRNA levels decreased (P<0.05). Immunohistochemistry showed reduced expression of HIF-1α and Caspase-3 in all treatment groups (P<0.05), with the most significant improvement observed in the IBN group and medium-dose DSS group (P<0.05). ConclusionDSS can effectively ameliorate glomerulosclerosis and lipid deposition in db/db mice, and its mechanism may involve the SIRT1/HIF-1α/VLDLr signaling pathway.
2.Protective Effect and Potential Mechanism of Danggui Shaoyaosan on Diabetic Kidney Disease in db/db Mice Based on Endoplasmic Reticulum Stress in Glomerular Endothelial Cells
Ruijia LI ; Zixuan WANG ; Shilong GUO ; Sen YANG ; Jing LI ; Qianqian ZHANG ; Wen DONG ; Dengzhou GUO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):28-35
ObjectiveTo investigate the therapeutic efficacy of Danggui Shaoyaosan (DSS) on renal injury in db/db mice and its impact on endoplasmic reticulum stress (ERS) in renal tissues. MethodsThirty 8-week-old male db/db mice and six db/m mice were acclimated for one week, after which urinary microalbumin and blood glucose levels were monitored to establish a diabetic kidney disease (DKD) model. The model mice were randomly divided into a model group, an irbesartan group, and three DSS treatment groups with different doses (16.77, 33.54, and 67.08 g·kg-1·d-1). A normal group was set as control. Each group was intragastrically administered with the corresponding drugs or saline for 8 weeks. After the intervention, general conditions were observed. Serum cystatin C (Cys-C), 24-hour urinary total protein (24 h-UTP), 24-hour urinary microalbumin (24 h-UMA), urinary creatinine (Ucr), and urea nitrogen (UUN) were measured. Transmission electron microscopy (TEM) was used to observe glomerular basement membrane (GBM) and ultrastructural changes of the endoplasmic reticulum (ER) in glomerular endothelial cells. Western blot, real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and immunohistochemistry were used to analyze renal tissue structure and the expression of GRP78, CHOP, and related markers. ResultsCompared with the normal group, the mice in the model group showed curled posture, sluggish response, poor fur condition, increased levels of Cys-C, 24 h-UTP, 24 h-UMA, and UUN (P<0.05), while Ucr decreased (P<0.05). The GBM was significantly thickened, with podocyte and foot process fusion. The protein expressions of GRP78, CHOP, and ATF6 were significantly upregulated (P<0.05), the mRNA levels of GRP78 and CHOP increased (P<0.05), and immunohistochemistry showed an enhanced GRP78 signal (P<0.05). After treatment, the mice exhibited improved behavior, normalized GBM and podocyte structure, improved ER morphology and markedly better biochemical indicators. Western blot, Real-time PCR, and immunohistochemistry indicated that the ERS-related markers were downregulated in the DSS treatment groups (P<0.05), suggesting alleviated ERS and improved renal function. ConclusionDSS can effectively ameliorate renal pathological damage in db/db mice, possibly by regulating ERS in glomerular endothelial cells, although the underlying signaling mechanisms require further investigation.
3.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
4.Pathogenesis and treatment progress of flap ischemia-reperfusion injury
Bo HE ; Wen CHEN ; Suilu MA ; Zhijun HE ; Yuan SONG ; Jinpeng LI ; Tao LIU ; Xiaotao WEI ; Weiwei WANG ; Jing XIE
Chinese Journal of Tissue Engineering Research 2025;29(6):1230-1238
BACKGROUND:Flap transplantation technique is a commonly used surgical procedure for the treatment of severe tissue defects,but postoperative flap necrosis is easily triggered by ischemia-reperfusion injury.Therefore,it is still an important research topic to improve the survival rate of transplanted flaps. OBJECTIVE:To review the pathogenesis and latest treatment progress of flap ischemia-reperfusion injury. METHODS:CNKI,WanFang Database and PubMed database were searched for relevant literature published from 2014 to 2024.The search terms used were"flap,ischemia-reperfusion injury,inflammatory response,oxidative stress,Ca2+overload,apoptosis,mesenchymal stem cells,platelet-rich plasma,signaling pathways,shock wave,pretreatment"in Chinese and English.After elimination of irrelevant literature,poor quality and obsolete literature,77 documents were finally included for review. RESULTS AND CONCLUSION:Flap ischemia/reperfusion injury may be related to pathological factors such as inflammatory response,oxidative stress response,Ca2+overload,and apoptosis,which can cause apoptosis of vascular endothelial cells,vascular damage and microcirculation disorders in the flap,and eventually lead to flap necrosis.Studies have found that mesenchymal stem cell transplantation,platelet-rich plasma,signaling pathway modulators,shock waves,and pretreatment can alleviate flap ischemia/reperfusion injuries from different aspects and to varying degrees,and reduce the necrosis rate and necrosis area of the grafted flap.Although there are many therapeutic methods for skin flap ischemia/reperfusion injury,a unified and effective therapeutic method has not yet been developed in the clinic,and the advantages and disadvantages of various therapeutic methods have not yet been compared.Most of the studies remain in the stage of animal experiments,rarely involving clinical observations.Therefore,a lot of research is required in the future to gradually move from animal experiments to the clinic in order to better serve the clinic.
5.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
6.Evaluation of the effect of integrated interventions on comorbidity of myopia and obesity among primary and secondary school students in Tongzhou District in Beijing
YANG Gang, YANG Dongmei, SONG Yi, LI Jing, WEN Han, CHE Jingyue, DONG Yanhui
Chinese Journal of School Health 2025;46(1):39-44
Objective:
To evaluate the intervention effectiveness of co-occurrence and prevention for myopia and obesity among primary and secondary school students, so as to provide a scientific basis for the development of comprehensive intervention measures in myopia and obesity.
Methods:
From September 2022 to September 2023, a cluster random sampling method was used to select 6 primary schools and 6 junior high schools from Tongzhou District, Beijing. Participants were randomly assigned to an intervention group (914 before intervention and 754 after intervention) and a control group (868 before intervention and 652 after intervention), with an expected duration of one academic year. Based on the RE-AIM framework, integrate resources from families, schools, communities, and medical institutions to develop a school-based intervention technology packagefor the co-occurrence and prevention of myopia and obesity in children. The intervention group received intervention according to the comprehensive intervention technology package, while the control group did not receive any intervention measures. Relevant health indicators during the baseline period and after intervention were measured and collected, and groups were compared by Chi quest test, t-test and Wilcoxon rank sum test.
Results:
After intervention, the uncorrected visual acuity of primary and secondary school students in the intervention group (4.79±0.30) and the control group (4.77±0.33) both decreased compared to those before intervention (4.80±0.30, 4.90±0.32) ( t =-7.00,-5.24); the decrease in uncorrected visual acuity in the intervention group was smaller than that in the control group( t =5.33)( P <0.01). After intervention, body mass index, waist circumference, hip circumference, and body fat percentage of primary and secondary school students in the intervention group decreased compared to those before intervention. However, the changes in these indicators were not statistically significant ( t/Z =-0.03, - 0.36,- 0.30,- 0.01, P >0.05); the above indicators in the control group increased compared to those before intervention, but only hip circumference and body fat percentage showed statistically significant changes ( t/Z =2.17, 2.62, P <0.05). After intervention, both the intervention group and the control group showed increases in systolic and diastolic blood pressure compared to those before intervention(intervention group: t =2.16,5.29; control group: t =6.84,5.07); the intervention group had lower systolic and diastolic blood pressure than the control group( t = -5.27 , -2.08)( P <0.05). After intervention, the intervention and the control groups had statistically significant differences in cognitive accuracy(92.48%, 69.33%) in terms of "outdoor exercise can prevent myopia" and "having 5 servings of adult fist sized vegetables and fruits every day" ( χ 2=6.30, 7.86, P <0.05). There was a statistically significant difference in the proportion of primary and secondary school students in the intervention group (40.98%) and the control group (35.43%) for "who did not drink sugary drinks for every day in the past 7 days" ( χ 2=4.32, P <0.05). After intervention, the intervention group and the control group showed increases in "school outdoor activity duration on school days" and "outdoor activity duration on rest days" compared to those before intervention ( t/Z =-13.32,-9.71;- 2.59,-2.69);the behavior rate of "visual acuity measurement frequency at least once every 3 months" in the intervention group (46.68%) and the control group (52.76%) increased compared to those before intervention (36.43%, 44.01%), and the increases in the intervention group were greater than that in the control group ( χ 2=17.52,11.08) ( P <0.05).
Conclusions
Comprehensive intervention measures have significant intervention effects on controlling the occurrence and development of comorbidity of myopia and obesity in children. It could actively promote collaboration and cooperation among families, schools, communities and medical institutions to reduce the occurrence of myopia and obesity among primary and secondary school students.
7.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
8.Tubuloside B inhibits Aβ 1-42 fibrillization and alleviates amyloid-induced cytotoxicity
Di ZHANG ; Juan-li ZHANG ; Ai-dong WEN ; Jing-wen WANG
Acta Pharmaceutica Sinica 2025;60(1):96-104
This study aimed to investigate the inhibitory effect of tubuloside B (Tub B) on amyloid
9.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.
10.Combination of CT/MRI LI-RADS With Second-Line Contrast-Enhanced Ultrasound Using Sulfur Hexafluoride or Perfluorobutane for Diagnosing Hepatocellular Carcinoma in High-Risk Patients
Yu LI ; Sheng LI ; Qing LI ; Kai LI ; Jing HAN ; Siyue MAO ; Xiaohong XU ; Zhongzhen SU ; Yanling ZUO ; Shousong XIE ; Hong WEN ; Xuebin ZOU ; Jingxian SHEN ; Lingling LI ; Jianhua ZHOU
Korean Journal of Radiology 2025;26(4):346-359
Objective:
The CT/MRI Liver Imaging Reporting and Data System (LI-RADS) demonstrates high specificity with relatively limited sensitivity for diagnosing hepatocellular carcinoma (HCC) in high-risk patients. This study aimed to explore the possibility of improving sensitivity by combining CT/MRI LI-RADS v2018 with second-line contrast-enhanced ultrasound (CEUS) LI-RADS v2017 using sulfur hexafluoride (SHF) or perfluorobutane (PFB).
Materials and Methods:
This retrospective analysis of prospectively collected multicenter data included high-risk patients with treatment-naive hepatic observations. The reference standard was pathological confirmation or a composite reference standard (only for benign lesions). Each participant underwent concurrent CT/MRI, SHF-enhanced US, and PFB-enhanced US examinations. The diagnostic performances for HCC of CT/MRI LI-RADS alone and three combination strategies (combining CT/ MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or a modified algorithm incorporating the Kupffer-phase findings for PFB [modified PFB]) were evaluated. For the three combination strategies, apart from the CT/MRI LR-5 criteria, HCC was diagnosed if CT/MRI LR-3 or LR-4 observations met the LR-5 criteria using LI-RADS SHF, LI-RADS PFB, or modified PFB.
Results:
In total, 281 participants (237 males; mean age, 55 ± 11 years) with 306 observations (227 HCCs, 40 non-HCC malignancies, and 39 benign lesions) were included. Using LI-RADS SHF, LI-RADS PFB, and modified PFB, 20, 23, and 31 CT/MRI LR-3/4 observations, respectively, were reclassified as LR-5, and all were pathologically confirmed as HCCs. Compared to CT/MRI LI-RADS alone (74%, 95% confidence interval [CI]: 68%–79%), the three combination strategies combining CT/MRI LI-RADS with either LI-RADS SHF, LI-RADS PFB, or modified PFB increased sensitivity (83% [95% CI: 77%–87%], 84% [95% CI: 79%–89%], 88% [95% CI: 83%–92%], respectively; all P < 0.001), while maintaining the specificity at 92% (95% CI: 84%–97%).
Conclusion
The combination of CT/MRI LI-RADS with second-line CEUS using SHF or PFB improved the sensitivity of HCC diagnosis without compromising specificity.


Result Analysis
Print
Save
E-mail