1.Chinese Medicine Regulates JAK2/STAT3 Signaling Pathway to Treat Ovarian Cancer: A Review
Yue ZHANG ; Danni DING ; Jia LI ; Wenwen MA ; Fengjuan HAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):323-330
		                        		
		                        			
		                        			Ovarian cancer (OC) is one of the most common malignant tumors in women, with the mortality rate being the highest among gynaecological malignant tumors. As the atypical symptoms of OC are difficult to be detected in the early stage, most patients are already in the advanced stage when being diagnosed. As a result, the clinical treatment has limited effects. Currently, the main therapies for OC are surgery and chemotherapy, while their drug resistance and adverse reactions seriously reduce the quality of life of patients. In recent years, traditional Chinese medicine (TCM) has attracted the attention of clinicians and researchers because of its high efficacy, low toxicity, and mild side effects. According to the TCM philosophy of treatment based on syndrome differentiation, the Chinese medicines with multiple targets, wide range, and mild side effects can be screened based on the molecular targets involved in the occurrence and development of OC, which can bring out the unique advantages of TCM in the treatment of OC. Modern studies have shown that the occurrence and development of OC are closely related to the abnormal expression of multiple signaling pathways. The continued abnormal activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway can lead to abnormal proliferation and malignancy of OC. cause abnormal proliferation and malignant transformation of OC, which is closely related to the development of OC. In addition, studies have shown that Chinese medicine can inhibit the proliferation, angiogenesis, invasion, and metastasis and promote the autophagy and apoptosis of OC cells by regulating the Janus kinase 2 (JAK2)/STAT3 signaling pathway, providing new therapeutic strategies and ideas for the prevention and treatment of OC. This paper summarizes the role of JAK2/STAT3 signaling pathway in OC development by reviewing the relevant articles and reviews the mechanism and research progress of active components and compound prescriptions of Chinese medicine intervening in OC development by regulating the JAK2/STAT3 signaling pathway. This review is expected to provide a systematic reference for clinical research and drug development of OC. 
		                        		
		                        		
		                        		
		                        	
2.Textual Research and Clinical Mechanism of Famous Prescription Didangtang in Treatise on Febrile Diseases
Junjie MA ; Wanbing WANG ; Jiaxin LI ; Yafei JIA ; Jingju WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):248-259
		                        		
		                        			
		                        			Didangtang is a classic formula for treating blood stasis and heat, as recorded in the Treatise on Febrile Diseases, and it has been highly praised by medical practitioners throughout history. It has been recorded in many traditional Chinese medical texts and used to this day. This article comprehensively examined the records of Didangtang in different ancient versions of Treatise on Febrile Diseases by excavating and sorting out related ancient medical books and modern literature. It also investigated the dosage unit measurement, preparation method, and content of the formula in medical books throughout history. The article provided a detailed summary and exploration of the origins and processing methods of rhubarb, peach kernels, leeches, and flies in the formula. At the same time, it reviewed the clinical practice of Didangtang by medical practitioners throughout history in relevant medical books, mainly including the adjustment of dosage forms, the increase or decrease in medicinal taste and dosage, the expansion of clinical application, and the creation and elucidation of similar formulas. Although there may be differences in the above information among medical practitioners throughout history, the basic idea of attacking blood stasis and heat is consistent. In addition, based on clinical practice, the author adhered to the principle of treating stasis and heat disease as the first reference when using Didangtang. It was suggested that blood should be circulated instead of stopping in the treatment of stasis and heat accumulation syndrome. At the same time, it was believed that the use of the method of attacking stasis and heat to regulate brain diseases and mental illnesses derives from the fact that removing stasis and generating new energy can nourish the heart and mind, providing ideas for the treatment of such diseases with Didangtang. On this basis, modern clinical and animal experiments have shown that Didangtang has certain effects in improving microcirculation disorders, regulating blood rheology and hemodynamics, enhancing insulin resistance, and inhibiting inflammatory reactions. This may be an important mechanism for the formula to ''conquer blood stasis and heat''. This article explored the textual research and clinical mechanism of Didangtang, presenting facts and evidence, so as to provide a reference for the clinical application of Didangtang and the research on other prescriptions. 
		                        		
		                        		
		                        		
		                        	
3.Development and validation of a prognostic nomogram model for patients with the lower third and abdominal oesophageal adenocarcinoma
Zhengshui XU ; Dandan LIU ; Jiantao JIANG ; Ranran KONG ; Jianzhong LI ; Yuefeng MA ; Zhenchuan MA ; Jia CHEN ; Minxia ZHU ; Shaomin LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):201-207
		                        		
		                        			
		                        			Objective To establish an individualized nomogram model and evaluate its efficacy to provide a possible evaluation basis for the prognosis of lower third and abdominal part of oesophageal adenocarcinoma (EAC). Methods Lower third and abdominal part of EAC patients from 2010 to 2015 were chosen from the SEER Research Plus Database (17 Regs, 2022nov sub). The patients were randomly allocated to the training cohort and the internal validation cohort with a ratio of 7∶3 using bootstrap resampling. The Cox proportional hazards regression analysis was used to determine significant contributors to overall survival (OS) in EAC patients, which would be elected to construct the nomogram prediction model. C-index, calibration curve and receiver operating characteristic (ROC) curve were performed to evaluate its efficacy. Finally, the efficacy to evaluate the OS of EAC patients was compared between the nomogram prediction model and TNM staging system. Results In total, 3945 patients with lower third and abdominal part of EAC were enrolled, including 3475 males and 470 females with a median age of 65 (57-72) years. The 2761 patients were allocated to the training cohort and the remaining 1184 patients to the internal validation cohort. In the training and the internal validation cohorts, the C-index of the nomogram model was 0.705 and 0.713, respectively. Meanwhile, the calibration curve also suggested that the nomogram model had a strong capability of predicting 1-, 3-, and 5-year OS rates of EAC patients. The nomogram also had a higher efficacy than the TNM staging system in predicting 1-, 3-, and 5-year OS rates of EAC patients. Conclusion This nomogram prediction model has a high efficiency for predicting OS in the patients with lower third and abdominal part of EAC, which is higher than that of the current TNM staging system.
		                        		
		                        		
		                        		
		                        	
4.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
		                        		
		                        			
		                        			ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine. 
		                        		
		                        		
		                        		
		                        	
5.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
		                        		
		                        			 Background:
		                        			and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture. 
		                        		
		                        			Methods:
		                        			A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture. 
		                        		
		                        			Results:
		                        			The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05). 
		                        		
		                        			Conclusion
		                        			The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population. 
		                        		
		                        		
		                        		
		                        	
6.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
7.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
8.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
		                        		
		                        			 Background:
		                        			and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture. 
		                        		
		                        			Methods:
		                        			A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture. 
		                        		
		                        			Results:
		                        			The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05). 
		                        		
		                        			Conclusion
		                        			The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population. 
		                        		
		                        		
		                        		
		                        	
9.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
		                        		
		                        			 Purpose:
		                        			The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs). 
		                        		
		                        			Materials and Methods:
		                        			Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients. 
		                        		
		                        			Results:
		                        			A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804. 
		                        		
		                        			Conclusion
		                        			USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients. 
		                        		
		                        		
		                        		
		                        	
10.Aldehyde Dehydrogenase 2 Gene Mutation May Reduce the Risk of Rupture of Intracranial Aneurysm in Chinese Han Population
Xiheng CHEN ; Siming GUI ; Dachao WEI ; Dingwei DENG ; Yudi TANG ; Jian LV ; Wei YOU ; Jia JIANG ; Jun LIN ; Huijian GE ; Peng LIU ; Yuhua JIANG ; Lixin MA ; Yunci WANG ; Ming LV ; Youxiang LI
Journal of Stroke 2025;27(2):237-249
		                        		
		                        			 Background:
		                        			and Purpose Ruptured intracranial aneurysms (RIA) are associated with a mortality rate of up to 40% in the Chinese population, highlighting the critical need for targeted treatment interventions for at-risk individuals. Although the impact of aldehyde dehydrogenase 2 (ALDH2) gene mutations on susceptibility to intracranial aneurysms (IA) is well documented, the potential connection between ALDH2 rs671 single-nucleotide polymorphism (SNP) and RIA remains unexplored. Given the increased prevalence of ALDH2 gene mutations among Chinese Han individuals, it is clinically relevant to investigate the link between ALDH2 rs671 SNP and IA rupture. 
		                        		
		                        			Methods:
		                        			A prospective study was conducted on 546 patients diagnosed with IA to investigate the association between ALDH2 rs671 SNP and the risk of IA rupture. 
		                        		
		                        			Results:
		                        			The ALDH2 rs671 SNP (ALDH2*2) was significantly more prevalent in patients with unruptured IA (UIA) than in those with RIA (32.56% vs. 18.58%, P=0.004). Multivariate logistic regression analysis revealed that people with the ALDH2 mutation (ALDH2*1/*2 and ALDH2*2/*2 gene type) had a significantly reduced odds ratio (OR=0.49; 95% confidence level [CI] 0.27–0.88; P=0.018) for RIAs. Age-specific subgroup analysis indicated that the ALDH2 mutation provided a stronger protective effect in individuals aged 60 years and above with IA compared to those under 60 years old (OR=0.38 vs. OR=0.52, both P<0.05). 
		                        		
		                        			Conclusion
		                        			The incidence of RIA was significantly higher in individuals with a normal ALDH2 gene (ALDH2*1/*1) than in those with an ALDH2 rs671 SNP (ALDH2*1/*2 or ALDH2*2/*2). ALDH2 rs671 SNP may serve as a protective factor against RIA in the Chinese Han population. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail