1.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
2.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
3.The mechanism of microcystin leucine-arginine (MC-LR)-induced injury of Sertoli cell immune response and biological behavior.
Kaili ZHU ; Changcheng ZHANG ; Xiaoping WU ; Shangyu LIU ; Xueyi ZHAO ; Ding YUAN ; Haixia ZHAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):753-758
Microcystin-leucine arginine (MC-LR), a potentially carcinogenic toxin, is produced by Cyanobacteria such as Microcystis and Ananabacteria during water bloom. Increasing evidence demonstrated that MC-LR induces male reproductive toxicity, mainly by inducing germ cell apoptosis, destroying cell cytoskeleton, interfering with DNA damage repair pathway, and damaging blood-testicular barrier (BTB), which eventually lead to male sterility. Testicular Sertoli cells are the somatic cells that directly contact with spermatogenic cells in seminiferous tubules. They not only regulate immune response to maintain testicular immune homeostasis by secreting a variety of cytokines and immunosuppressive factors, but also provide the protective effects of spermatogenic cells by forming BTB. MC-LR induces inflammation and apoptosis of Sertoli cells, and destroys the integrity of the BTB, and then causes spermatogenesis dysfunction.
Male
;
Humans
;
Sertoli Cells
;
Leucine/pharmacology*
;
Arginine/pharmacology*
;
Microcystins/metabolism*
;
Immunity
4.Analgesic Activity of Jin Ling Zi Powder and Its Single Herbs: A Serum Metabonomics Study.
Cui-Fang WANG ; Xiao-Rong CAI ; Yan-Ni CHI ; Xiao-Yao MIAO ; Jian-Yun YANG ; Bing-Kun XIAO ; Rong-Qing HUANG
Chinese journal of integrative medicine 2022;28(11):1007-1014
OBJECTIVE:
To compare the analgesic effect of Jin Ling Zi Powder (JLZ) and its two single herbs.
METHODS:
The hot plate method was used to induce pain. Totally 36 mice were randomly divided into 6 groups by a complete random design, including control, model, aspirin (ASP, 0.14 g/kg body weight), JLZ (14 g/kg body weight), Corydalis yanhusuo (YHS, 14 g/kg body weight), and Toosendan Fructus (TF, 14 g/kg body weight) groups, 6 mice in each group. The mice in the control and model groups were given the same volume of saline, daily for 2 consecutive weeks. At 30, 60, 90, and 120 min after the last administration, the pain threshold of mice in each group was measured, and the improvement rate of pain threshold was calculated. Serum endogenous metabolites were analyzed by gas chromatography-mass spectrometry (GC-MS).
RESULTS:
There was no statistical difference in pain threshold among groups before administration (P>0.05). After 2 weeks of administration, compared with the model group, the pain threshold in JLZ, YHS, TF and ASP groups were increased to varying degrees (P<0.05). JLZ had the best analgesic effect and was superior to YHS and TF groups. A total of 14 potential biomarkers were screened in serum data analysis and potential biomarkers levels were all reversed to different degrees after the treatment with JLZ and its single herbs. These potential biomarkers were mainly related to glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, aminoacyl-tRNA biosynthesis and inositol phosphate metabolism.
CONCLUSIONS
The analgesic mechanism of JLZ and YHS was mainly due to the combination of glycine and its receptor, producing post-synaptic potential, reducing the excitability of neurons, and weakening the afferent effect of painful information.
Animals
;
Mice
;
Analgesics/therapeutic use*
;
Aspirin/pharmacology*
;
Biomarkers
;
Body Weight
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycine
;
Glyoxylates
;
Inositol Phosphates
;
Isoleucine
;
Leucine
;
Metabolomics/methods*
;
Powders
;
RNA, Transfer
;
Serine
;
Threonine
;
Valine
5.Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332.
Yao ZHAO ; Chao FANG ; Qi ZHANG ; Ruxue ZHANG ; Xiangbo ZHAO ; Yinkai DUAN ; Haofeng WANG ; Yan ZHU ; Lu FENG ; Jinyi ZHAO ; Maolin SHAO ; Xiuna YANG ; Leike ZHANG ; Chao PENG ; Kailin YANG ; Dawei MA ; Zihe RAO ; Haitao YANG
Protein & Cell 2022;13(9):689-693
6.Astragaloside Ⅳ regulates Nrf2/Bach1/HO-1 signaling pathway and inhibits H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation.
Ping YANG ; Yu-Ping ZHOU ; Xiu-Chun CHANG ; Feng WANG ; Gao-Wen LI
China Journal of Chinese Materia Medica 2019;44(11):2331-2337
Astragaloside Ⅳ(AS-Ⅳ) has protective effects against ischemia-reperfusion injury(IRI), but its mechanism of action has not yet been determined. This study aims to investigate the protective effects and mechanism of AS-Ⅳ on H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation(H/R). The H/R model of myocardial cells was established by hypoxic culture for 12 hours and then reoxygenation culture for 8 hours. After AS-Ⅳ treatment, cell viability, the reactive oxygen species(ROS) levels, as well as the content or activity of superoxide dismutase(SOD), malondialdehyde(MDA), interleukin 6(IL-6), and tumor necrosis factor alpha(TNF-α), were measured to evaluate the effect of AS-Ⅳ treatment. The effect of AS-Ⅳ on HO-1 protein expression and nuclear Nrf2 and Bach1 protein expression was determined by Western blot. Finally, siRNA was used to knock down HO-1 gene expression to observe its reversal effect on AS-Ⅳ intervention. The results showed that as compared with the H/R model group, the cell viability was significantly increased(P<0.01), ROS level in the cells, MDA, hs-CRP and TNF-α in cell supernatant and nuclear protein Bach1 expression in the cells were significantly decreased(P<0.01), while SOD content, HO-1 protein expression in cells and expression of nuclear protein Nrf2 were significantly increased(P<0.01) in H/R+AS-Ⅳ group. However, pre-transfection of HO-1 siRNA into H9c2 cells by liposome could partly reverse the above effects of AS-Ⅳ after knocking down the expression of HO-1. This study suggests that AS-Ⅳ has significant protective effect on H/R injury of H9c2 cardiomyocytes, and Nrf2/Bach1/HO-1 signaling pathway may be a key signaling pathway for the effect.
Apoptosis
;
Basic-Leucine Zipper Transcription Factors
;
metabolism
;
Cell Hypoxia
;
Cells, Cultured
;
Heme Oxygenase-1
;
metabolism
;
Humans
;
Myocytes, Cardiac
;
drug effects
;
NF-E2-Related Factor 2
;
metabolism
;
Saponins
;
pharmacology
;
Signal Transduction
;
Triterpenes
;
pharmacology
7.Mori Cortex extract ameliorates nonalcoholic fatty liver disease (NAFLD) and insulin resistance in high-fat-diet/streptozotocin-induced type 2 diabetes in rats.
Li-Li MA ; Yan-Yan YUAN ; Ming ZHAO ; Xin-Rong ZHOU ; Tashina JEHANGIR ; Fu-Yan WANG ; Yang XI ; Shi-Zhong BU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):411-417
Nonalcoholic fatty liver disease (NAFLD) and type 2 Diabetes Mellitus (T2DM) are highly prevalent diseases and are closely associated, with NAFLD being present in the majority of T2DM patients. In Asian traditional medicine, Mori Cortex is widely used for the treatment of diabetes and hyperlipidemia. However, whether it has a therapeutic effect on T2DM associated with NAFLD is still unknown. The present study showed that the oral treatment with Mori Cortex extract (MCE; 10 g·kg·d) lowered the blood lipid levels and reversed insulin resistance (IR) in high fat-diet/streptozotocin-induced type 2 diabetes in rats. The expression levels of sterol receptor element-binding protein-1c (SREBP-1c) and carbohydrate-responsive element binding protein (ChREBP), which are involved in steatosis in NAFLD rats, were measured in the liver samples. MCE decreased the protein and mRNA expression levels of SREBP-1c and ChREBP. In conclusion, down-regulation of SREBP-1c and ChREBP might contribute to the protective effect of MCE on hepatic injury and IR in the rats with T2DM associated with NAFLD.
Alanine Transaminase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
;
genetics
;
Diabetes Mellitus, Type 2
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Diet, High-Fat
;
adverse effects
;
Disease Models, Animal
;
Down-Regulation
;
drug effects
;
Insulin
;
blood
;
Insulin Resistance
;
physiology
;
Lipid Metabolism
;
drug effects
;
genetics
;
Liver
;
drug effects
;
physiopathology
;
Male
;
Morus
;
Non-alcoholic Fatty Liver Disease
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin
8.Fibroblast growth factor-1 inhibits Wnt/β-catenin pathway during adipogenesis.
Xiao LUO ; Ru JIA ; Ke LI ; Xiaoying ZHU ; Danwen ZHAO ; Jonathan P WHITEHEAD ; Jianqun YAN
Journal of Central South University(Medical Sciences) 2015;40(8):843-850
OBJECTIVE:
To determine the time course and potential mechanism of fibroblast growth factor-1 (FGF-1) in the regulation of adipogenesis.
METHODS:
We cultured human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocytes with recombinant FGF-1 and harvested cells at various stages prior to and during differentiation; at cell proliferation (D-3), confluence (D0), early (D3), middle (D7) and mature (D14) stages of differentiation. We determined lipid accumulation in mature adipocytes by morphological observation and quantitative measurement of oil red O staining. We also examined the expression of adipogenic genes and related markers involved in the Wnt/β-catenin pathway using quantitative Real-time PCR and Western blot.
RESULTS:
Compared to control SGBS cells, treatment with FGF-1 increased lipid accumulation; induced a sustained increase in the mRNA for peroxisome proliferater-activated receptor γ (PPARγ), glyceraldehyde-3-phosphate dehydrogenase (G3PDH), adiponectin and glucose transporter type 4 (GLUT4); and promoted a sustained decrease in expression of markers of the Wnt/β-catenin pathway, β-catenin and transcription factor 4 (TCF4).
CONCLUSION
The adipogenic effects of FGF-1 are apparent throughout the whole priming and differentiation period in human SGBS pre-adipocytes. Furthermore, our results suggest that FGF-1
promotes adipogenesis, at least in part, via a sustained decrease in activity of the Wnt/β-catenin pathway.
Adipocytes
;
drug effects
;
metabolism
;
Adipogenesis
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
;
metabolism
;
Cell Differentiation
;
Cells, Cultured
;
Fibroblast Growth Factor 1
;
pharmacology
;
Humans
;
Recombinant Proteins
;
pharmacology
;
Transcription Factor 4
;
Transcription Factors
;
metabolism
;
Wnt Signaling Pathway
;
beta Catenin
;
metabolism
9.Effects of Biejiajian Pills on Wnt signal pathway signal molecules β-catenin/TCF4 complex activities and downstream proteins cyclin D1 and MMP-2 in hepatocellular carcinoma cells.
Bin WEN ; Haitao SUN ; Songqi HE ; Yang CHENG ; Wenyan JIA ; Eryan FAN ; Jie PANG
Journal of Southern Medical University 2014;34(12):1758-1762
OBJECTIVETo study the effect of Biejiajian Pills on Wnt signal pathway and the mechanisms underlying its action to suppress the invasiveness of hepatocellular carcinoma.
METHODSHepG2 cells cultured in the serum of rats fed with Biejiajian Pills for 48 h were examined for β-catenin expression using immunofluorescence, β-catenin/TCF4 complex activity with luciferase, and expressions of the downstream proteins cyclin D1 and MMP-2 using qRT-PCR.
RESULTSBiejiajian Pills-treated sera significantly reduced the expressions of cytoplasmic and nuclear β-catenin protein, cyclin D1 and MMP-2 proteins and lowered the activities of β-catenin/TCF4 complex.
CONCLUSIONBiejiajian Pills may serve as a potential anti-tumor agent, whose effect might be mediated by inhibiting the Wnt/β-catenin pathway.
Animals ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; metabolism ; Carcinoma, Hepatocellular ; metabolism ; Cyclin D1 ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Hep G2 Cells ; Humans ; Liver Neoplasms ; metabolism ; Matrix Metalloproteinase 2 ; metabolism ; Rats ; Transcription Factor 4 ; Transcription Factors ; metabolism ; Wnt Proteins ; Wnt Signaling Pathway ; beta Catenin ; metabolism
10.DADLE suppresses the proliferation of human liver cancer HepG2 cells by activation of PKC pathway and elevates the sensitivity to cis-diammine dichloridoplatium.
Bo TANG ; Jian DU ; Zhen-ming GAO ; Rui LIANG ; De-guang SUN ; Xue-li JIN ; Li-ming WANG
Chinese Journal of Oncology 2012;34(6):425-429
OBJECTIVETo investigate the effect of DADLE, a δ-opioid receptor agonist, on the proliferation of human liver cancer HepG2 cells and explore the mechanism involving PKC pathway.
METHODSHepG2 cells were treated with DADLE at different doses (0.01, 0.1, 1.0 and 10 µmol/L). Cell viability was determined using methyl thiazolyl terazolium (MTT) assay. The expression of PKC mRNA and p-PKC protein were examined by RT-PCR and Western blot assay. After treated separately with DADLE plusing NAL or PMA, the cell cycle of HepG2 cells was analyzed by flow cytometer. MTT was used to detect their proliferation capacity and Western blot was used to examine the p-PKC expression. The growth inhibitory rate of HepG2 cells treated with DADLE and cis-diammine dichloridoplatinum (CDDP) was analyzed.
RESULTSDADLE at different concentrations showed an inhibitory effect on the proliferation of HepG2 cells though inhibiting the expression of PKC mRNA and p-PKC protein. The results of flow cytometry showed that compared with the control group, the percentage of S + G(2)/M cells in DADLE-treated group was lowered by 3.94% (P < 0.01). Meanwhile, after treated with NAL and PMA, the percentage was elevated by 3.22% and 3.63%, respectively (P < 0.01). The MTT and Western blot assays showed that compared with the control group, the values of A570 and p-PKC protein levels in the HepG2 cells of DADLE-treated group were significantly decreased (P < 0.01). After treatment with NAL and PMA, the values of A570 and p-PKC protein levels were elevated significantly (P < 0.01). The growth inhibitory rate of DADLE + CDDP group was 79.9%, significantly lower than 25.2% and 43.2% of the DADLE and CDDP groups, respectively.
CONCLUSIONSActivation of δ-opioid receptor by DADLE inhibits the apoptosis of human liver cancer HepG2 cells. The underlying mechanism may be correlated with PKC pathway. DADLE can enhance the chemosensitivity of HepG2 cells to CDDP.
Antineoplastic Agents ; pharmacology ; Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Cisplatin ; pharmacology ; Dose-Response Relationship, Drug ; Drug Resistance, Neoplasm ; Enkephalin, Leucine-2-Alanine ; administration & dosage ; pharmacology ; Hep G2 Cells ; Humans ; Naltrexone ; analogs & derivatives ; pharmacology ; Phosphorylation ; Protein Kinase C ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Receptors, Opioid, delta ; agonists ; Signal Transduction ; Tetradecanoylphorbol Acetate ; analogs & derivatives ; pharmacology

Result Analysis
Print
Save
E-mail