1.Effects of different dose microwave radiation on protein components of cultured rabbit lens.
Kai-jun WANG ; Ke YAO ; De-qiang LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2007;25(4):208-210
OBJECTIVETo study the effects of different dose microwave radiation on protein components of cultured rabbit lens, and analyze the mechanisms of lens injury caused by microwave radiation.
METHODSCultured rabbit lens were exposed to microwave radiation with frequency of 2450 MHz and power density of 0.25, 0.50, 1.00, 2.00, 5.00 mW/cm(2) for 8 hours in vitro. The transparency of lens was observed. Changes of protein concentration were detected after different lens protein components were extracted, including water-soluble protein (WSP), urea soluble protein (USP), alkali soluble protein (ASP) and sonicated protein (SP). The influence of microwave radiation on WSP was analyzed using SDS-PAGE electrophoresis and coomassie-blue staining.
RESULTSTransparency of lens decreased after radiation. There was obvious opacification of lens cortex after 5.00 mW/cm(2) microwave radiation for 8 hours. After 1.00, 2.00 and 5.00 mW/cm(2) radiation, the percentage of WSP decreased while USP increased obviously. There was no change of ASP. The percentage of SP decreased when the power of microwave was 5.00 mW/cm(2). The low molecular weight protein of WSP decreased while high molecular weight protein increased after microwave radiation.
CONCLUSIONMicrowave radiation higher than 1.00 mW/cm(2) can affect the proportion of WSP and USP in cultured rabbit lens, and cause changes of lens transparency and refractive power, which leads to lens opacity.
Animals ; In Vitro Techniques ; Lens, Crystalline ; metabolism ; radiation effects ; Microwaves ; adverse effects ; Proteins ; metabolism ; Rabbits
2.Effect of acute exposure to microwave from mobile phone on DNA damage and repair of cultured human lens epithelial cells in vitro.
Li-xia SUN ; Ke YAO ; Ji-liang HE ; De-qiang LU ; Kai-jun WANG ; Hong-wu LI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2006;24(8):465-467
OBJECTIVETo investigate the DNA damage of human lens epithelial cells (LECs) caused by acute exposure to low-power 217 Hz modulated 1.8 GHz microwave radiation and DNA repair.
METHODSCultured LECs were exposed to 217 Hz modulated 1.8 GHz microwave radiation at SAR (specific absorption rate) of 0, 1, 2, 3 and 4 W/kg for 2 hours in an sXc-1800 incubator and irradiate system. The DNA single strand breaks were detected with comet assay in sham-irradiated cells and irradiated cells incubated for varying periods: 0, 30, 60, 120 and 240 min after irradiation. Images of comets were digitized and analyzed using an Imagine-pro plus software, and the indexes used in this study were tail length (TL) and tail moment (TM).
RESULTSThe difference in DNA-breaks between the exposure and sham exposure groups induced by 1 and 2 W/kg irradiation was not significant at every detect time (P > 0.05). As for the dosage of 3 and 4 W/kg there was difference in both group immediately after irradiation (P < 0.01). At the time of 30 min after irradiation the difference went on at both group (P < 0.01). However, the difference disappeared after one hour's incubation in 3 W/kg group (P > 0.05), and existed in 4 W/kg group.
CONCLUSIONNo or repairable DNA damage was observed after 2 hour irradiation of 1.8 GHz microwave on LECs when SAR < or = 3 W/kg. The DNA damages caused by 4 W/kg irradiation were irreversible.
Cell Phone ; Cells, Cultured ; Comet Assay ; DNA Damage ; radiation effects ; DNA Repair ; Dose-Response Relationship, Radiation ; Epithelial Cells ; radiation effects ; Humans ; Lens, Crystalline ; cytology ; radiation effects ; Microwaves
3.Effect of low-intensity microwave radiation on proliferation of cultured epithelial cells of rabbit lens.
Kai-jun WANG ; Ke YAO ; De-qiang LU ; Huai JIANG ; Jian TAN ; Wen XU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2003;21(5):346-349
OBJECTIVETo compare the effects of different doses of microwave on the proliferative activity and cell cycle of cultured epithelial cells of rabbit lens, and to investigate the limit tolerant of microwave exposure.
METHODSCultured epithelial cells of rabbit lens were exposed to microwave radiation with frequency of 2,450 MHz and power density of 0.10, 0.25, 0.50, 1.00, 2.00 mW/cm(2) for 8 h in vitro. HE staining was used to observe the morphological changes of lens epithelial cells, the proliferative activity and cell cycle were measured by MTT assay and PI fluorescent staining.
RESULTS8 h after radiation, 0.50, 1.00 and 2.00 mW/cm(2) microwave could decrease the proliferation of lens epithelial cells, make the cells disordered arrangement, shrinkage, detachment, and inhibit the synthesis of cell DNA. The percentage of G(0)/G(1) phase cells were 71.95% +/- 2.12%, 75.68% +/- 3.35% and 82.40% +/- 8.68% respectively, which were higher than that in control group (61.68% +/- 5.76%, P < 0.05 or P < 0.01). The percentage of S phase cells were 19.32% +/- 3.07%, 16.08% +/- 4.91% and 12.98% +/- 8.08% respectively, which were lower than that in control group (28.05% +/- 5.12%, P < 0.05 or P < 0.01). No obvious changes could be detected in 0.10, 0.25 mW/cm(2) microwave groups (P > 0.05).
CONCLUSIONMicrowave exceeding 0.50 mW/cm(2) may make injury to lens epithelial cells after 8 hour radiation, which may be related to the effect of microwave radiation on cell cycle.
Animals ; Cell Cycle ; radiation effects ; Cells, Cultured ; DNA ; metabolism ; Epithelial Cells ; cytology ; metabolism ; radiation effects ; Lens, Crystalline ; cytology ; metabolism ; radiation effects ; Microwaves ; Rabbits
4.Effects of 50 Hz magnetic fields on DNA double-strand breaks in human lens epithelial cells.
Xiao-gang DU ; Shan-shan XU ; Qing CHEN ; De-qiang LU ; Zheng-ping XU ; Qun-li ZENG
Journal of Zhejiang University. Medical sciences 2008;37(1):9-14
OBJECTIVETo investigate the effects of 50 Hz magnetic fields (MF) on DNA double-strand breaks in human lens epithelial cells (hLECs).
METHODSThe cultured human lens epithelial cells were exposed to 0.4 mT 50 Hz MF for 2 h, 6 h, 12 h, 24 h and 48 h. Cells exposed to 4-nitroquinoline-1-oxide, a DNA damage agent, at a final concentration of 0.1 micromol/L for 1 h were used as positive controls.After exposure, cells were fixed with 4 % paraformaldehyde and for H2AX (gamma H2AX) immunofluorescence measurement. gamma H2AX foci were detected at least 200 cells for each sample. Cells were classified as positive when more than three foci per cell were observed. Mean values of foci per cell and percentage of foci positive cells were adopted as indexes of DNA double-strand breaks.
RESULTThe mean value of foci per cell and the percentage of gamma H2AX foci positive cells in 50 Hz MF exposure group for 24 h were (2.93 +/-0.43) and (27.88 +/-2.59)%, respectively, which were significantly higher than those of sham-exposure group [(1.77 +/-0.37) and (19.38+/-2.70)%, P <0.05], and the mean value of foci per cell and the percentage of gamma H2AX foci positive cells in 50 Hz MF exposure group for 48 h were (3.14 +/-0.35) and (31.00 +/-3.44)%, which were significantly higher than those of sham-exposure group (P <0.01). However there was no significant difference between 50 Hz MF exposure groups for 2 h, 6 h, 12 h and sham-exposure group for above two indexes (P >0.05).
CONCLUSION0.4 mT 50 Hz MF exposure for longer duration might induce DNA double-strand breaks in human lens epithelial cells in vitro.
Cells, Cultured ; DNA ; radiation effects ; DNA Breaks, Double-Stranded ; radiation effects ; DNA Damage ; radiation effects ; DNA Repair ; radiation effects ; Electromagnetic Fields ; Epithelial Cells ; metabolism ; radiation effects ; Humans ; Lens, Crystalline ; cytology
5.Effects of microwave radiation on lens hydration and expression of PKC-alpha and transcription factors in lens epithelial cells.
Kai-jun WANG ; Ke YAO ; Jian TAN ; De-qiang LU ; Huai JIANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2007;25(8):456-459
OBJECTIVETo observe the effects of low power microwave radiation on lens hydration and lens epithelial cells in vitro, and detect the expression of PKC-alpha, c-fos and c-jun in lens epithelial cells.
METHODSRabbit lens were exposed to microwave radiation with frequency of 2450 MHz and power density of 0.5, 2.0 and 5.0 mW/cm(2) in vitro. The hydration of lens was measured after 8 hours. Morphological changes of lens epithelial cells were observed using a phase-contrast microscope and Hoechst 33258 staining. Expression of PKC-alpha, c-fos and c-jun were analyzed using gel electrophoresis and western blot analysis.
RESULTSAfter 2.0 and 5.0 mW/cm(2) microwave radiation, the hydration of lens was increased compared to control groups (P<0.05), the shape of lens epithelial cells showed shrinking and disorder and cells nuclei appeared chromatin condensation. There was no change of lens and lens epithelial cells after 0.5 mW/cm(2) microwave radiation. The expression of PKC-alpha was significantly increased in cell membrane, however, decreased in cell cytoplasm after 2.0 mW/cm(2) microwave radiation for 2, 4, 6 and 8 hours. There was significantly increased expression of c-fos and c-jun protein compared with control groups (P<0.05, P<0.01).
CONCLUSIONLow power microwave radiation higher than 2.0 mW/cm(2) can activate PKC-alpha by increasing its expression in cell membrane, then induce high expression of c-fos and c-jun, which may relate to cellular signaling pathway of microwave radiation injury to lens and lens epithelial cells.
Animals ; Epithelial Cells ; metabolism ; pathology ; radiation effects ; In Vitro Techniques ; Lens, Crystalline ; metabolism ; pathology ; radiation effects ; Protein Kinase C-alpha ; metabolism ; Rabbits ; Transcription Factors ; metabolism
6.Changes in gap junctional intercellular communication in rabbits lens epithelial cells induced by low power density microwave radiation.
Juan YE ; Ke YAO ; Qunli ZENG ; Deqiang LU
Chinese Medical Journal 2002;115(12):1873-1876
OBJECTIVETo demonstrate the changes in gap junctional intercellular communication (GJIC) mediated by low power density microwave radiation in rabbits lens epithelial cells (LECs) and its mechanisms.
METHODSRabbits' eyes were exposed to 5 mW/cm(2) and 10 mW/cm(2) power densities of microwave radiation for 3 hours. The fluorescence-recovery-after-photobleaching (FRAP) method was used to determine the GJIC. The localization and function of connexin 43 in LECs was detected by laser scanning confocal microscopy.
RESULTSThe GJIC of rabbits LECs was inhibited by microwave radiation especially in the 10 mW/cm(2) irradiated samples. A decrease in connexin 43-positive staining was seen in 5 mW/cm(2) x 3 h treated LECs. Intracellular space accumulation and cytoplasmic internalization were clearly demonstrated in 10 mW/cm(2) group.
CONCLUSIONSLow power densities microwave radiation (5 mW/cm(2) and 10 mW/cm(2)) induces damage to connexin 43 and inhibits the GJIC of rabbits LECs. These changes result in an osmotic imbalance within the lens and induce early cataract. 5 mW/cm(2) or 10 mW/cm(2) microwave radiation is cataractogenic.
Animals ; Cataract ; etiology ; Cell Communication ; radiation effects ; Connexin 43 ; analysis ; Epithelial Cells ; radiation effects ; Fluorescent Antibody Technique, Indirect ; Gap Junctions ; radiation effects ; Lens, Crystalline ; radiation effects ; Microwaves ; adverse effects ; Rabbits
7.Blocking 1800 MHz mobile phone radiation-induced reactive oxygen species production and DNA damage in lens epithelial cells by noise magnetic fields.
Wei WU ; Ke YAO ; Kai-jun WANG ; De-qiang LU ; Ji-liang HE ; Li-hong XU ; Wen-jun SUN
Journal of Zhejiang University. Medical sciences 2008;37(1):34-38
OBJECTIVETo investigate whether the exposure to the electromagnetic noise can block reactive oxygen species (ROS) production and DNA damage of lens epithelial cells induced by 1800 MHz mobile phone radiation.
METHODSThe DCFH-DA method and comet assay were used respectively to detect the intracellular ROS and DNA damage of cultured human lens epithelial cells induced by 4 W/kg 1800 MHz mobile phone radiation or/and 2 muT electromagnetic noise for 24 h intermittently.
RESULT1800 MHz mobile phone radiation at 4 W/kg for 24 h increased intracellular ROS and DNA damage significantly (P<0.05). However, the ROS level and DNA damage of mobile phone radiation plus noise group were not significant enhanced (P>0.05) as compared to sham exposure group.
CONCLUSIONElectromagnetic noise can block intracellular ROS production and DNA damage of human lens epithelial cells induced by 1800 MHz mobile phone radiation.
Cell Phone ; Cells, Cultured ; DNA ; radiation effects ; DNA Damage ; radiation effects ; Electromagnetic Fields ; Epithelial Cells ; metabolism ; radiation effects ; Humans ; Lens, Crystalline ; cytology ; Microwaves ; adverse effects ; Radiation ; Reactive Oxygen Species ; metabolism
8.Mechanisms of Apoptosis on Human Lens Epithelium after Ultraviolet Light Exposure.
Seong Taeck KIM ; Jae Woong KOH
Korean Journal of Ophthalmology 2011;25(3):196-201
PURPOSE: The purpose of this study is to understand the mechanism of apoptosis occurring on a cultured human lens epithelial cell line after exposure to ultraviolet (UV) light. We intended to confirm the presence of cellular toxicity and apoptosis and to reveal the roles of p53, caspase 3 and NOXA in these processes. METHODS: Cells were irradiated with an ultraviolet lamp. Cellular toxicity was measured by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hoechst staining and fluorescent anti-caspase 3 antibodies were used for apoptosis investigation. The quantities of p53, caspase 3, and NOXA were measured by Western blotting for to investigate the apoptosis pathway. RESULTS: Cellular toxicity on the human lens epithelium markedly increased with time after UV exposure. On Hoechst staining, we found that apoptosis also remarkably increased after exposure to ultraviolet light, compared with a control group. In the immunochemical study using anti-caspase 3 antibodies, active caspase 3 significantly increased after exposure to ultraviolet light. On Western blotting, p53 decreased, while caspase 3 and NOXA increased. CONCLUSIONS: Exposure of cultured human lens epithelial cell lines to ultraviolet light induces apoptosis, which promotes the expression of NOXA and caspase 3 increases without increasing p53. This may suggest that UV induced apoptosis is caused by a p53-independent pathway in human lens epithelial cells.
Apoptosis/*physiology
;
Caspase 3/metabolism
;
Cell Line
;
Cell Survival/radiation effects
;
Epithelial Cells/radiation effects
;
Humans
;
Lens, Crystalline/cytology/*physiology/*radiation effects
;
Proto-Oncogene Proteins c-bcl-2/metabolism
;
Tumor Suppressor Protein p53/metabolism
;
*Ultraviolet Rays
9.Effect of ultraviolet radiation on ALDH1 expression in human lens epithelial cells.
Jingming SHI ; Songbai JIA ; Xuan CHEN ; Luosheng TANG
Journal of Central South University(Medical Sciences) 2012;37(6):572-577
OBJECTIVE:
To determine the apoptosis-inducing effect of ultraviolet light (UV) on human lens epithelial cell (HLEC) and to explore the involvement of changes in ALDH1 folowing UV radiation.
METHODS:
HLEC was exposed to the same UV light source and was subsequently divided into 6 groups according to UV radiation time of 0 (control group), 5, 10, 15, and 30 min. Apoptosis was detected by AO/EB staining. Changes of ALDH1 in HLEC were detected by immunohistochemical staining and Western blot.
RESULTS:
The intensity of immunohistochemical staining and the rate of positive cells decreased with increase of UV time (P<0.05). The rate of positive ALDH1 cells was negatively correlated with the rate of apoptosis (r= -0.92, P<0.05). Western blot showed the integrated absorbance values significantly decreased with the increase of UV time (P<0.05).
CONCLUSION
ALDH1 in HLEC decreases with an increase of UV exposure, which may be related to UV induced apoptosis of HLEC.
Aldehyde Dehydrogenase 1
;
Apoptosis
;
radiation effects
;
Cells, Cultured
;
Epithelial Cells
;
cytology
;
metabolism
;
radiation effects
;
Humans
;
Isoenzymes
;
genetics
;
metabolism
;
Lens, Crystalline
;
cytology
;
Retinal Dehydrogenase
;
genetics
;
metabolism
;
Ultraviolet Rays
;
adverse effects
10.Ganoderic acid A protects lens epithelial cells from UVB irradiation and delays lens opacity.
Li-Hua KANG ; Guo-Wei ZHANG ; Jun-Fang ZHANG ; Bai QIN ; Huai-Jin GUAN
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):934-940
A contributory role of oxidative stress and protection by antioxidant nutrients have been suspected in cataract formation. Ganoderic acid A (GAA), an effective lanostane triterpene, is widely reported as an antioxidant. The aim of this study is to investigate the potential effects of GAA on cataract formation. After lens epithelial cells (LECs) were exposed to UVB radiation for different periods, cell viability, apoptosis-related protein levels, malondialdehyde (MDA) and superoxide dismutase (SOD) activities were monitored. We found that cell viability, the Bcl-2/Bax ratio and SOD activity were increased, while Cleaved caspase-3 levels and MDA activity were decreased compared with those in UVB-impaired LECs after GAA treated. Furthermore, GAA activated PI3K/AKT in UVB-impaired LECs and effectively delayed the occurrence of lens opacity in vitro. In conclusion, these findings demonstrated that GAA exhibited protective functions in SRA01/04 cells and rat lenses against UVB-evoked impairment through elevating cell viability and antioxidant activity, inhibiting cell apoptosis, activating the PI3K/AKT pathway and delaying lens opacity.
Animals
;
Apoptosis
;
Cataract/prevention & control*
;
Cell Line
;
Cell Survival
;
Epithelial Cells/radiation effects*
;
Heptanoic Acids/pharmacology*
;
Humans
;
Lanosterol/pharmacology*
;
Lens, Crystalline/radiation effects*
;
Malondialdehyde/metabolism*
;
Rats
;
Superoxide Dismutase/metabolism*
;
Ultraviolet Rays/adverse effects*