1.Antioxidative and cytotoxic properties of diarylheptanoids isolated from Zingiber officinale.
Leixiang YANG ; Changxin ZHOU ; Kexin HUANG ; Liyan SONG ; Qunxiong ZHENG ; Rongmin YU ; Rongping ZHANG ; Yihang WU ; Su ZENG ; Christopher H K CHENG ; Yu ZHAO ; Xiaokun LI ; Jia QU
China Journal of Chinese Materia Medica 2009;34(3):319-323
OBJECTIVETo investigate the antioxidant and cytotoxic properties of five diarylheptanoids (1-5) isolated from the rhizomes of Zingiber officinale.
METHODVarious models such as scavenging superoxide anions and 1,1-diphenyl-2- picrylhydrazyl (DPPH) radicals, inhibiting lipid peroxidation, as well as protecting of rat pheochromocytoma (PC12) cells induced by hydrogen peroxide (H2O2) were employed to assay the antioxidative effects of the diarylheptanoids. The cytotoxicities of compounds 1-5 were measured with MTT assays.
RESULTThe test compounds (1-5) showed promising DPPH inhibitory activities, and compound 5 exhibited the strongest DPPH scavenging activity with an IC50 value of (22.6+/-2.4) micromol x L(-1). Compounds 1, 3 and 4 showed potential anti-peroxidative effects with inhibitory rates of (66.3+/-15.4)%, (68.7+/-15.8)% and (72.2+/-10.6)%, respectively, at 100 microg x mL(-1). It could be observed that compounds 1, 3 and 4 demonstrated significant neuroprotective activities in a dose-dependent manner. Moreover, compound 3 exhibited certain cytotoxicities against human chronic myelogenous leukemia cells (K562) and its adriamycin-resistant cells (K562/ADR) with IC50 values of (34.9+/-0.6), (50.6+/-23.5) micromol x L(-1), respectively.
CONCLUSIONIn vitro results demonstrated that five diarylheptanoids (1-5) isolated from the roots of Z. officinale were capable of scavenging radicals, inhibiting lipid peroxidation and protecting PC12 cells against the insult by H2O2. Additionally, compound 3 could inhibit the growth of K562 and K562/ADR cells.
Animals ; Antioxidants ; toxicity ; Cell Proliferation ; drug effects ; Cytotoxins ; toxicity ; Diarylheptanoids ; isolation & purification ; metabolism ; toxicity ; Free Radicals ; metabolism ; Ginger ; chemistry ; Humans ; Hydrogen Peroxide ; metabolism ; K562 Cells ; Oils, Volatile ; pharmacology ; PC12 Cells ; Rats ; Rats, Sprague-Dawley