1.Leishmania tropica infection, in comparison to Leishmania major, induces lower delayed type hypersensitivity in BALB/c mice.
Hamid MAHMOUDZADEH-NIKNAM ; Simin Sadat KIAEI ; Davood IRAVANI
The Korean Journal of Parasitology 2007;45(2):103-109
Leishmania tropica and L. major are etiologic agents of human cutaneous leishmaniasis. Delayed type hypersensitivity (DTH) is an immunologic response that has been frequently used as a correlate for protection against or sensitization to leishmania antigen. In BALB/c mice, L. tropica infection results in non-ulcerating disease, whereas L. major infection results in destructive lesions. In order to clarify the immunologic mechanisms of these 2 different outcomes, we compared the ability of these 2 leishmania species in induction of DTH response in this murine model. BALB/c mice were infected with L. major or L. tropica, and disease evolution and DTH responses were determined. The results show that the primary L. major infection can exacerbate the secondary L. major infection and is associated with DTH response. Higher doses of the primary L. major infection result in more disease exacerbation of the secondary L. major infection as well as higher DTH response. L. tropica infection induces lower DTH responses than L. major. We have previously reported that the primary L. tropica infection induces partial protection against the secondary L. major infection in BALB/c mice. Induction of lower DTH response by L. tropica suggests that the protection induced against L. major by prior L. tropica infection may be due to suppression of DTH response.
Animals
;
Disease Models, Animal
;
Ear/pathology
;
Female
;
Foot/pathology
;
*Hypersensitivity, Delayed
;
Leishmania major/*immunology
;
Leishmania tropica/*immunology
;
Leishmaniasis, Cutaneous/*immunology/*parasitology/pathology
;
Mice
;
Mice, Inbred BALB C
2.The Route of Leishmania tropica Infection Determines Disease Outcome and Protection against Leishmania major in BALB/c Mice.
Hamid MAHMOUDZADEH-NIKNAM ; Ghader KHALILI ; Firoozeh ABRISHAMI ; Ali NAJAFY ; Vahid KHAZE
The Korean Journal of Parasitology 2013;51(1):69-74
Leishmania tropica is one of the causative agents of leishmaniasis in humans. Routes of infection have been reported to be an important variable for some species of Leishmania parasites. The role of this variable is not clear for L. tropica infection. The aim of this study was to explore the effects of route of L. tropica infection on the disease outcome and immunologic parameters in BALB/c mice. Two routes were used; subcutaneous in the footpad and intradermal in the ear. Mice were challenged by Leishmani major, after establishment of the L. tropica infection, to evaluate the level of protective immunity. Immune responses were assayed at week 1 and week 4 after challenge. The subcutaneous route in the footpad in comparison to the intradermal route in the ear induced significantly more protective immunity against L. major challenge, including higher delayed-type hypersensitivity responses, more rapid lesion resolution, lower parasite loads, and lower levels of IL-10. Our data showed that the route of infection in BALB/c model of L. tropica infection is an important variable and should be considered in developing an appropriate experimental model for L. tropica infections.
Animals
;
Disease Models, Animal
;
Female
;
Leishmania major/*immunology
;
Leishmania tropica/*immunology/*pathogenicity
;
Leishmaniasis/*immunology/parasitology/*pathology
;
Mice
;
Mice, Inbred BALB C
;
Treatment Outcome
3.Anti-leishmanial Effects of Trinitroglycerin in BALB/C Mice Infected with Leishmania major via Nitric Oxide Pathway.
Hossein NAHREVANIAN ; Mana NAJAFZADEH ; Reza HAJIHOSSEINI ; Habib NAZEM ; Mahin FARAHMAND ; Zahra ZAMANI
The Korean Journal of Parasitology 2009;47(2):109-115
This study investigated whether trinitroglycerine (TNG) as nitric oxide (NO) releasing agent had anti-leishmanial effects and mediated pathology in BALB/c mice infected with Leishmania major. Cutaneous leishmaniasis (CL), a zoonotic infection caused by leishmania protozoa is still one of the health problems in the world and in Iran. NO is involved in host immune responses against intracellular L. major, and leishmania killing by macrophages is mediated by this substance. Moreover, application of CL treatment with NO-donors has been recently indicated. In our study, TNG was used for its ability to increase NO and to modify CL infection in mice, in order to evaluate NO effects on lesion size and formation, parasite proliferation inside macrophages, amastigote visceralization in target organs, and NO induction in plasma and organ suspensions. Data obtained in this study indicated that TNG increased plasma and liver-NO, reduced lesion sizes, removed amastigotes from lesions, livers, spleens, and lymph nodes, declined proliferation of amastigotes, hepatomegaly, and increased survival rate. However, TNG reduced spleen-NO and had no significant effects on spelenomegaly. The results show that TNG therapy reduced leishmaniasis and pathology in association with raised NO levels. TNG had some antiparasitic activity by reduction of positive smears from lesions, livers, spleens, and lymph nodes, which could emphasize the role of TNG to inhibit visceralization of L. major in target organs.
Animal Structures/parasitology
;
Animals
;
Antiprotozoal Agents/chemistry/*therapeutic use
;
Female
;
Leishmania major/*drug effects/immunology
;
Leishmaniasis, Cutaneous
;
Macrophages/parasitology
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide/blood/metabolism/*pharmacology
;
Nitroglycerin/*analogs & derivatives/*therapeutic use
;
Severity of Illness Index
;
Skin/pathology
;
Survival Analysis