1.Mechanism of Action of Guishenwan in Treatment of Ovarian Insufficiency Diseases: A Review
Yao CHEN ; Sainan TIAN ; Bin'an WANG ; Shengyu WANG ; Wen'e LIU ; Lei LEI ; Li TANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):317-324
Guishenwan (GSW), originating from Jingyue Quanshu (Zhang Jingyue's Complete Works), is a classic traditional Chinese medicine (TCM) formula with a history of over 400 years. Designed for kidney essence deficiency syndrome, it is clinically applied to treat diseases associated with essence-blood deficiency, such as ovarian insufficiency diseases in women, oligospermia-induced infertility in men, and lumbar disc herniation. Numerous studies have confirmed its significant efficacy and advantages in managing ovarian insufficiency diseases, including diminished ovarian reserve (DOR), premature ovarian insufficiency (POI), and premature ovarian failure (POF). According to recent literature, the therapeutic mechanisms of GSW in treating ovarian insufficiency diseases involve regulating the hypothalamic-pituitary-ovarian axis (HPOA) function, ameliorating reproductive endocrine disorders, improving ovarian function, modulating relevant signaling pathways, and exerting immunoregulatory and anti-inflammatory effects. A review of GSW in clinical treatment revealed that clinical applications of GSW, particularly in combination with Western medicine, not only alleviate symptoms but also compensate for the limitations of hormone replacement therapy, thereby reducing recurrence, minimizing adverse reactions, and enhancing safety. This review aims to provide a scientific basis for the rational clinical use of GSW in ovarian insufficiency diseases, offer innovative TCM strategies for developing novel ovarian-protective drugs, promote the integration of TCM and Western medicine in reproductive medicine, and ultimately contribute a Chinese approach to global management of ovarian insufficiency diseases.
2.Mechanisms of Sini San in Regulation of Gut Microbiota Against Depression and Liver Injury in CUMS Rats
Junling LI ; Yan ZHANG ; Lei WANG ; Fang QI ; Zhenzhen CHEN ; Tianxing CHEN ; Yuhang LIU ; Xueying WANG ; Xianwen TANG ; Yubo LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):33-40
ObjectiveTo explore the efficacy and mechanisms of Sini San in the treatment of depression and liver injury based on gut microbiota. MethodsThirty-two male Sprague-Dawley (SD) rats were randomly divided into a normal group, model group (M), Sini San group (MS, 2.5 g·kg-1), and fluoxetine group (MF, 2 mg·kg-1). Except for the normal group, rats in the other three groups were subjected to chronic unpredictable mild stress (CUMS). After 8 weeks, the open-field test and sucrose preference test were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum corticosterone (CORT), adrenocorticotropic hormone (ACTH), corticotropin-releasing factor (CRF), lipopolysaccharide (LPS), Zonulin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), γ-aminobutyric acid (GABA) levels in the hippocampus and prefrontal cortex, and brain-derived neurotrophic factor (BDNF) levels in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect hippocampal BDNF mRNA expression. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured using the ultraviolet lactate dehydrogenase method. The ultrastructure of the intestinal epithelium was observed by electron microscopy, and gut microbiota in rat feces were analyzed using 16S rDNA high-throughput sequencing. ResultsCompared with the normal group, the sucrose preference of rats in the model group was significantly reduced (P0.01), whereas it was significantly increased in the Sini San group compared with the model group (P0.05). Compared with the normal group, hippocampal GABA protein levels and BDNF mRNA expression in the model group were significantly decreased (P0.05), and compared with the model group, both were significantly increased in the Sini San group (P0.05, P0.01). Compared with the normal group, serum LPS and Zonulin levels in the model group were significantly increased (P0.05, P0.01), and compared with the model group, Zonulin levels in the Sini San group were significantly decreased (P0.05). No obvious changes were observed in the ultrastructure of the jejunal mucosa among groups. Compared with the normal group, widened and blurred tight junctions, sparse and shortened microvilli, and mitochondrial swelling with cristae disruption in epithelial cells were observed in the ileal and colonic mucosa of the model group, which were markedly improved in the Sini San and fluoxetine groups. The results of 16S rDNA high-throughput sequencing showed that Sini San improved CUMS-induced dysbiosis of Bacteroidetes and Proteobacteria. Correlation analysis indicated that Bacteroidetes and Proteobacteria were significantly correlated with depression-related indicators, liver function, and intestinal mucosal permeability. ConclusionSini San exerts antidepressant and hepatoprotective effects by improving Bacteroidetes and Proteobacteria and inhibiting the increase in intestinal mucosal permeability in CUMS rats.
3.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
4.Mechanisms of Sini San in Regulation of Gut Microbiota Against Depression and Liver Injury in CUMS Rats
Junling LI ; Yan ZHANG ; Lei WANG ; Fang QI ; Zhenzhen CHEN ; Tianxing CHEN ; Yuhang LIU ; Xueying WANG ; Xianwen TANG ; Yubo LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):33-40
ObjectiveTo explore the efficacy and mechanisms of Sini San in the treatment of depression and liver injury based on gut microbiota. MethodsThirty-two male Sprague-Dawley (SD) rats were randomly divided into a normal group, model group (M), Sini San group (MS, 2.5 g·kg-1), and fluoxetine group (MF, 2 mg·kg-1). Except for the normal group, rats in the other three groups were subjected to chronic unpredictable mild stress (CUMS). After 8 weeks, the open-field test and sucrose preference test were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum corticosterone (CORT), adrenocorticotropic hormone (ACTH), corticotropin-releasing factor (CRF), lipopolysaccharide (LPS), Zonulin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), γ-aminobutyric acid (GABA) levels in the hippocampus and prefrontal cortex, and brain-derived neurotrophic factor (BDNF) levels in the hippocampus. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect hippocampal BDNF mRNA expression. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured using the ultraviolet lactate dehydrogenase method. The ultrastructure of the intestinal epithelium was observed by electron microscopy, and gut microbiota in rat feces were analyzed using 16S rDNA high-throughput sequencing. ResultsCompared with the normal group, the sucrose preference of rats in the model group was significantly reduced (P<0.01), whereas it was significantly increased in the Sini San group compared with the model group (P<0.05). Compared with the normal group, hippocampal GABA protein levels and BDNF mRNA expression in the model group were significantly decreased (P<0.05), and compared with the model group, both were significantly increased in the Sini San group (P<0.05, P<0.01). Compared with the normal group, serum LPS and Zonulin levels in the model group were significantly increased (P<0.05, P<0.01), and compared with the model group, Zonulin levels in the Sini San group were significantly decreased (P<0.05). No obvious changes were observed in the ultrastructure of the jejunal mucosa among groups. Compared with the normal group, widened and blurred tight junctions, sparse and shortened microvilli, and mitochondrial swelling with cristae disruption in epithelial cells were observed in the ileal and colonic mucosa of the model group, which were markedly improved in the Sini San and fluoxetine groups. The results of 16S rDNA high-throughput sequencing showed that Sini San improved CUMS-induced dysbiosis of Bacteroidetes and Proteobacteria. Correlation analysis indicated that Bacteroidetes and Proteobacteria were significantly correlated with depression-related indicators, liver function, and intestinal mucosal permeability. ConclusionSini San exerts antidepressant and hepatoprotective effects by improving Bacteroidetes and Proteobacteria and inhibiting the increase in intestinal mucosal permeability in CUMS rats.
5.Molecular Mechanism of Programmed Cell Death in Chronic Obstructive Pulmonary Disease and Traditional Chinese Medicine Intervention: A Review
Xin PENG ; Yunhui LI ; Lei LIANG ; Zheyu LUAN ; Hanxiao WANG ; Haotian XU ; Ziming DANG ; Jihong FENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):304-313
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that poses a significant threat to global health, exhibiting high morbidity, disability and mortality rate, with its prevention and treatment situation becoming increasingly critical. The pathogenesis of COPD is complex, and the underlying cellular and molecular biological mechanisms remain incompletely elucidated. Programmed cell death (PCD) is the process wherein cells actively undergo demise to maintain internal environmental stability in response to certain signals or specific stimuli. Contemporary medical research indicates that the dysregulation of PCD patterns such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis is closely related to the onset and progression of COPD. Clarifying the molecular mechanisms of PCD in COPD may provide novel perspectives for in-depth understanding and prevention of the disease. Traditional Chinese medicine (TCM) is characterized by holistic regulation. In recent years, extensive research has been conducted in the TCM field focusing on modulating apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis for the treatment of COPD, yielding remarkable achievements. Therefore, this study systematically explored the molecular mechanism of PCD in COPD and reviewed the potential mechanisms and intervention status of TCM targeting PCD in COPD, aiming to provide insights and references for the clinical prevention, treatment and in-depth research of COPD.
6.Current Status of Traditional Chinese Medicine Diagnosis and Treatment of Inflammatory Bowel Disease and the Research on Mechanism
Junxiang LI ; Hong SHEN ; Tangyou MAO ; Lei ZHU ; Jiaqi ZHANG ; Zhibin WANG ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):103-110
In recent years, traditional Chinese medicine (TCM) has achieved significant progress in the treatment of inflammatory bowel disease (IBD). A comprehensive literature search was conducted covering the period from January 1, 2010, to December 30, 2024, across Chinese databases including China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP China Science and Technology Journal Database, and the Chinese Biomedical Literature Service System, as well as international databases such as PubMed, Web of Science, and Embase. The clinical applications and mechanistic studies of TCM in IBD were systematically reviewed. The current status of TCM research on the etiology and pathogenesis of IBD, innovative clinical practices, and multimodal therapeutic approaches, including Chinese herbal formulas, single herbs or active compounds, acupuncture, herbal retention enema, and acupoint application, were summarized, together with their synergistic effects when combined with western medical treatments. The development and application of Chinese patent medicines for IBD are undergoing a profound transition from efficacy validation to mechanistic exploration. Mechanistic studies on the effects of TCM in IBD mainly focus on regulating gut microbiota homeostasis, repairing the intestinal mucosal barrier, and modulating intestinal immune balance. Furthermore, future research directions for TCM-based IBD management are proposed, including the establishment of TCM diagnostic and treatment models, expanding integrated applications of external and internal TCM therapies, innovating personalized treatment strategies, and advancing drug development. These efforts aim to provide insights for the standardized and precision-oriented development of TCM in the diagnosis and treatment of IBD.
7.Proteomic Analysis of Danlou Tablet in Improving Platelet Function for Treating Coronary Heart Disease with Phlegm-stasis Intermingling Syndrome in Minipigs
Ziyan WANG ; Ying LI ; Aoao WANG ; Hongxu MENG ; Yue SHI ; Yanlei MA ; Guoyuan ZHANG ; Lei LI ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):41-53
ObjectiveThis paper aims to observe the role of Danlou tablet in treating coronary heart disease (CHD) with phlegm-stasis intermingling syndrome in minipigs by improving platelet function and explore the potential pharmacological mechanism of Danlou tablet in regulating platelet function by using proteomics technology. MethodsThirty Bama minipigs were randomly divided into a normal control group (6 pigs) and a high-fat diet group (24 pigs). After 2 weeks of high-fat diet feeding, the high-fat diet group was randomly subdivided into a model group, an atorvastatin group (1 mg·kg-1), and Danlou tablet groups (0.6 g·kg-1 and 0.3 g·kg-1). All groups continued to receive a high-fat diet for 8 weeks after the procedure. The normal control group was given a regular diet, underwent only coronary angiography, and did not receive an interventional injury procedure. The model group and each administration group were fed a high-fat diet. Two weeks later, they underwent a coronary angiography injury procedure. After the procedure, drugs were mixed into the feed every morning for 8 consecutive weeks, with the minipigs maintained on a continuous high-fat diet during this period. Quantitative proteomics technology was further used to study platelet proteins, and differential proteins were obtained by screening. Bioinformatics analysis was performed to analyze key regulatory proteins and biological pathways involved in the therapeutic effect of Danlou tablet on CHD with phlegm-stasis intermingling syndrome. ResultsCompared with the normal control group, the model group showed a significant increase in total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) of minipigs' serum (P<0.01), a significant shortening in prothrombin time of (PT) (P<0.01), a coagulation function index, and an increase in whole blood viscosity (P<0.01) and platelet aggregation rate (P<0.01). Moreover, the platelet morphology was altered, and the contents of endothelin-1 (ET-1) and nitric oxide (NO) were significantly increased (P<0.01). Hemodynamic parameters were obviously abnormal, including significantly decreased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular systolic pressure (LVSP), and left ventricular maximal positive dp/dt (LV+dp/dtmax) (P<0.01). Left ventricular maximal negative dp/dt (LV-dp/dtmax) was significantly increased (P<0.01). Besides, there were myocardial cell hypertrophy, obvious edematous degeneration, massive interstitial inflammatory cell infiltration, high degree of fibrosis, and coronary endothelial atherosclerosis. TC and TG levels in minipigs' serum were significantly reduced in Danlou tablet groups with 0.6 g·kg-1 and 0.3 g·kg-1 (P<0.05, P<0.01), compared with those in the model group. LDL-C was decreased in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). The whole blood viscosity under low and high shear conditions was significantly reduced in the Danlou tablet group with 0.6 g·kg-1 (P<0.05). In groups with all doses of Danlou tablet, maximum aggregation rate (MAR) and average aggregation rate (AAR) were significantly decreased (P<0.05, P<0.01), and platelets' morphological changes such as pseudopodia extension were reduced. ET-1 levels in the serum were significantly reduced. In the Danlou tablet group with 0.6 g·kg-1, NO level in the serum was reduced (P<0.05). In groups with all doses of Danlou tablet, DBP and MAP were significantly increased (P<0.05). In the Danlou tablet group with 0.6 g·kg-1, LVSP and LV+dp/dtmax were significantly increased (P<0.05, P<0.01), and LV-dp/dtmax was significantly decreased (P<0.05). In groups with all doses of Danlou tablet, edematous degeneration in myocardial tissue was milder, and coronary artery lesion degree was significantly alleviated. Compared with the normal control group, there were 94 differentially expressed proteins in the model group, including 81 up-regulated and 13 down-regulated proteins. Compared with the model group, the Danlou tablet group with 0.6 g·kg-1 showed 174 differentially expressed proteins, including 100 up-regulated and 74 down-regulated proteins. A total of 30 proteins were reversed after Danlou tablet intervention. Bioinformatics analysis revealed that its pharmacological mechanism may exert anti-platelet activation, aggregation, and adhesion effects through biological pathways such as regulation of actin cytoskeleton, platelet activation pathway, Fcγ receptor-mediated phagocytosis, as well as proteins such as growth factor receptor-bound protein 2 (GRB2), Ras-related C3 botulinum toxin substrate 2 (RAC2), RAC1, and heat shock protein 90 alpha family class A member 1 (HSP90AA1). ConclusionDanlou tablet can effectively reduce platelet activation and aggregation, exerting a good therapeutic effect on CHD with phlegm-stasis intermingling syndrome in minipigs. Its pharmacological mechanism may involve regulating biological pathways such as actin cytoskeleton and platelet activation pathway, as well as proteins like GRB2, RAC2, RAC1, and HSP90AA1, thereby exerting a pharmacological effect in anti-platelet activation, aggregation, and adhesion.
8.Key scientific issues and breakthrough paths to eliminate the harm of hepatitis B virus infection
Yixue WANG ; Bo PENG ; Lei WEI ; Quanxin LONG ; Yuchen XIA ; Yinyan SUN ; Wenhui LI
Journal of Clinical Hepatology 2026;42(1):2-6
Hepatitis B virus (HBV) exclusively infects liver parenchymal cells and forms covalently closed circular DNA (cccDNA) within their nuclei. HBV cccDNA serves as the essential template for viral gene transcription, the sole source of progeny virus production, and the key driver of viral antigen expression, and it is the molecular basis for the persistence of HBV infection. Therefore, elimination and/or functional silencing of cccDNA is the key to eradicate chronic HBV infection. This article discusses the critical scientific issues that need to be solved during elimination of the harm of HBV infection from the perspectives of the synthesis, transcription, and clearance of cccDNA, as well as the impact of nonparenchymal cells on cccDNA, in order to provide a reference for eradicating HBV infection in the future.
9.Application of "balance-shaped sternal elevation device" in the subxiphoid uniportal video-assisted thoracoscopic surgery for anterior mediastinal masses resection
Jinlan ZHAO ; Weiyang CHEN ; Chunmei HE ; Yu XIONG ; Lei WANG ; Jie LI ; Lin LIN ; Yushang YANG ; Lin MA ; Longqi CHEN ; Dong TIAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):308-312
Objective To introduce an innovative technique, the "balance-shaped sternal elevation device" and its application in the subxiphoid uniportal video-assisted thoracoscopic surgery (VATS) for anterior mediastinal masses resection. Methods Patients who underwent single-port thoracoscopic assisted anterior mediastinal tumor resection through the xiphoid process at the Department of Thoracic Surgery, West China Hospital, Sichuan University from May to June 2024 were included, and their clinical data were analyzed. Results A total of 7 patients were included, with 3 males and 4 females, aged 28-72 years. The diameter of the tumor was 1.9-17.0 cm. The operation time was 62-308 min, intraoperative blood loss was 5-100 mL, postoperative chest drainage tube retention time was 0-9 days, pain score on the 7th day after surgery was 0-2 points, and postoperative hospital stay was 3-12 days. All patients underwent successful and complete resection of the masses and thymus, with favorable postoperative recovery. Conclusion The "balance-shaped sternal elevation device" effectively expands the retrosternal space, providing surgeons with satisfactory surgical views and operating space. This technique significantly enhances the efficacy and safety of minimally invasive surgery for anterior mediastinal masses, reduces trauma and postoperative pain, and accelerates patient recovery, demonstrating important clinical significance and application value.
10.Gradient artificial bone repair scaffold regulates skeletal system tissue repair and regeneration
Yu ZHANG ; Ruian XU ; Lei FANG ; Longfei LI ; Shuyan LIU ; Lingxue DING ; Yuexi WANG ; Ziyan GUO ; Feng TIAN ; Jiajia XUE
Chinese Journal of Tissue Engineering Research 2025;29(4):846-855
BACKGROUND:Gradient artificial bone repair scaffolds can mimic unique anatomical features in musculoskeletal tissues,showing great potential for repairing injured musculoskeletal tissues. OBJECTIVE:To review the latest research advances in gradient artificial bone repair scaffolds for tissue engineering in the musculoskeletal system and describe their advantages and fabrication strategies. METHODS:The first author of the article searched the Web of Science and PubMed databases for articles published from 2000 to 2023 with search terms"gradient,bone regeneration,scaffold".Finally,76 papers were analyzed and summarized after the screening. RESULTS AND CONCLUSION:(1)As an important means of efficient and high-quality repair of skeletal system tissues,gradient artificial bone repair scaffolds are currently designed bionically for the natural gradient characteristics of bone tissue,bone-cartilage,and tendon-bone tissue.These scaffolds can mimic the extracellular matrix of native tissues to a certain extent in terms of structure and composition,thus promoting cell adhesion,migration,proliferation,differentiation,and regenerative recovery of damaged tissues to their native state.(2)Advanced manufacturing technology provides more possibilities for gradient artificial bone repair scaffold preparation:Gradient electrospun fiber scaffolds constructed by spatially differentiated fiber arrangement and loading of biologically active substances have been developed;gradient 3D printed scaffolds fabricated by layered stacking,graded porosity,and bio-3D printing technology;gradient hydrogel scaffolds fabricated by in-situ layered injections,simple layer-by-layer stacking,and freeze-drying method;and in addition,there are also scaffolds made by other modalities or multi-method coupling.These scaffolds have demonstrated good biocompatibility in vitro experiments,were able to accelerate tissue regeneration in small animal tests,and were observed to have significantly improved histological structure.(3)The currently developed gradient artificial bone repair scaffolds have problems such as mismatch of gradient scales,unclear material-tissue interactions,and side effects caused by degradation products,which need to be further optimized by combining the strengths of related disciplines and clinical needs in the future.

Result Analysis
Print
Save
E-mail