1.Comparative Study on Effect of Jingui Shenqiwan and Liuwei Dihuangwan on Reproductive Ability and Brain Function of Normal Mice
Hong SUN ; Fan LEI ; Chenggong LI ; Rui LUO ; Shixian HU ; Bin REN ; Juan HAO ; Yi DING ; Lijun DU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):1-14
ObjectiveTo explore the effects of Jingui Shenqiwan (JSW) and Liuwei Dihuangwan (LDW) on the reproductive ability and brain function of normal mice and compare the actions of the two medications. MethodsSeven groups of female and male mice were divided at a ratio of 2∶1. Except for the control group, the other six groups were as follows: a group of both males and females receiving JSW (3.0 g·kg-1), a group of both males and females receiving LDW (4.5 g·kg-1), a group of males receiving water and females receiving JSW, a group of males receiving water while females receiving LDW, a group of females receiving water while males receiving JSW, and a group of females receiving water while males receiving LDW. Each group was administered the drug for 14 days and then caged together at a 2∶1 (female∶male) ratio to detect the number of pregnant mice and calculate the pregnancy rate. Pregnant mice continued receiving the drug until they naturally gave birth, which was followed by the observation of newborn mice, calculation of their average number, and the measurement of the offspring's preference for sugar water and neonatal recognition index. At the end of the experiment, the weights of the thymus and spleen were measured to calculate the organ coefficients, and mRNA or protein expression was analyzed in the brain and testes or ovaries. A 1% sucrose solution was used to examine the euphoria of their brain reward systems, while novel object recognition test (NOR) was applied to assess their memory capabilities. mRNA expression was detected using real-time quantitative polymerase chain reaction (Real-time PCR) assay, and protein expression was analyzed with Western blot. ResultsCompared with the control group, oral administration of JSW to both male and female mice for 14 days significantly increased the pregnancy rate of female mice on day 2 after being caged together (P<0.05), while LDW showed a trend but no statistical significance. Additionally, compared with the control group, JSW could upregulate the gene expression of gonadotropin-releasing hormone (GnRH) in the thalamus, as well as reproductive stem cell factor (SCF) and tyrosine kinase receptor (c-Kit) in the testes and reproductive stem cell marker mouse vasa homologue (MVH) in the ovaries, upregulate the expression of proteins influencing neuronal functional activity, such as brain-derived neurotrophic factor (BDNF), in hippocampal neurons (P<0.05), and enhance sucrose preference in male mice (P<0.05). Compared with the control group, JSW significantly increased sucrose preference and novel object recognition index in offspring mice (P<0.05), which was related to the upregulation of hippocampal dopamine D1 receptor (D1R) and N-methyl-D-aspartate receptor (Nmdar) gene expression. Compared with the control group, both JSW and LDW could upregulate the protein expression of glucocorticoid receptor (GR), BDNF, and tyrosine kinase receptor B (TrkB) in the hippocampus of offspring mice (P<0.05). ConclusionJSW significantly enhances the reproductive ability of normal mice, which is not only related to the release of gonadotropin but also associated with its regulation of brain function. Additionally, JSW has a certain regulatory effect on the brain function of the offspring mice.
2.Construction and in vitro osteogenic activity study of magnesium-strontium co-doped hydroxyapatite mineralized collagen
WANG Meng ; SUN Yifei ; CAO Xiaoqing ; WEI Yiyuan ; CHEN Lei ; ZHANG Zhenglong ; MU Zhao ; ZHU Juanfang ; NIU Lina
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):15-28
Objective:
To investigate the efficacy of magnesium-strontium co-doped hydroxyapatite mineralized collagen (MSHA/Col) in improving the bone repair microenvironment and enhancing bone regeneration capacity, providing a strategy to address the insufficient biomimetic composition and limited bioactivity of traditional hydroxyapatite mineralized collagen (HA/Col) scaffolds.
Methods:
A high-molecular-weight polyacrylic acid-stabilized amorphous calcium magnesium strontium phosphate precursor (HPAA/ACMSP) was prepared. Its morphology and elemental distribution were characterized by high-resolution transmission electron microscopy (TEM) and energy-dispersive spectroscopy. Recombinant collagen sponge blocks were immersed in the HPAA/ACMSP mineralization solution. Magnesium-strontium co-doped hydroxyapatite was induced to deposit within collagen fibers (experimental group: MSHA/Col; control group: HA/Col). The morphological characteristics of MSHA/Col were observed using scanning electron microscopy (SEM). Its crystal structure and chemical composition were analyzed by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. The mineral phase content was evaluated by thermogravimetric analysis. The scaffold's porosity, ion release, and in vitro degradation performance were also determined. For cytological experiments, CCK-8 assay, live/dead cell staining, alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blotting were used to evaluate the effects of the MSHA/Col scaffold on the proliferation, viability, early osteogenic differentiation activity, late mineralization capacity, and gene and protein expression levels of key osteogenic markers [runt-related transcription factor 2 (Runx2), collagen type Ⅰ (Col-Ⅰ), osteopontin (Opn), and osteocalcin (Ocn)] in mouse embryonic osteoblast precursor cells (MC3T3-E1).
Results:
HPAA/ACMSP appeared as amorphous spherical nanoparticles under TEM, with energy spectrum analysis showing uniform distribution of carbon, oxygen, calcium, phosphorus, magnesium, and strontium elements. SEM results of MSHA/Col indicated successful complete intrafibrillar mineralization. Elemental analysis showed the mass fractions of magnesium and strontium were 0.72% (matching the magnesium content in natural bone) and 2.89%, respectively. X-ray diffraction revealed characteristic peaks of hydroxyapatite crystals (25.86°, 31°-34°). Infrared spectroscopy results showed characteristic absorption peaks for both collagen and hydroxyapatite. Thermogravimetric analysis indicated a mineral phase content of 78.29% in the material. The scaffold porosity was 91.6% ± 1.1%, close to the level of natural bone tissue. Ion release curves demonstrated sustained release behavior for both magnesium and strontium ions. The in vitro degradation rate matched the ingrowth rate of new bone tissue. Cytological experiments showed that MSHA/Col significantly promoted MC3T3-E1 cell proliferation (130% increase in activity at 72 h, P < 0.001). MSHA/Col exhibited excellent efficacy in promoting osteogenic differentiation, significantly upregulating the expression of osteogenesis-related genes and proteins (Runx2, Col-Ⅰ, Opn, Ocn) (P < 0.01).
Conclusion
The MSHA/Col scaffold achieves dual biomimicry of natural bone in both composition and structure, and effectively promotes osteogenic differentiation at the genetic and protein levels, breaking through the functional limitations of pure hydroxyapatite mineralized collagen. This provides a new strategy for the development of functional bone repair materials
3.Key scientific issues and breakthrough paths to eliminate the harm of hepatitis B virus infection
Yixue WANG ; Bo PENG ; Lei WEI ; Quanxin LONG ; Yuchen XIA ; Yinyan SUN ; Wenhui LI
Journal of Clinical Hepatology 2026;42(1):2-6
Hepatitis B virus (HBV) exclusively infects liver parenchymal cells and forms covalently closed circular DNA (cccDNA) within their nuclei. HBV cccDNA serves as the essential template for viral gene transcription, the sole source of progeny virus production, and the key driver of viral antigen expression, and it is the molecular basis for the persistence of HBV infection. Therefore, elimination and/or functional silencing of cccDNA is the key to eradicate chronic HBV infection. This article discusses the critical scientific issues that need to be solved during elimination of the harm of HBV infection from the perspectives of the synthesis, transcription, and clearance of cccDNA, as well as the impact of nonparenchymal cells on cccDNA, in order to provide a reference for eradicating HBV infection in the future.
5.Protective effect of vascular endothelial growth factor B on retinal nerve cells
Xin SUN ; Lei ZHANG ; Honglian GAO ; Shoukuan ZHANG ; Jun JIANG
International Eye Science 2025;25(7):1089-1093
The retina has a complex and delicate function and structure, containing a large number of neuronal cells with extremely limited regenerative capacity, which are susceptible to damage and apoptosis under pathological conditions such as ischemia and hypoxia, resulting in irreversible vision loss. Retinal diseases are very common, such as retinitis pigmentosa(RP), age-related macular degeneration(ARMD), diabetic retinopathy(DR), and glaucoma. Most of the diseases in this category are treated symptomatically, which is effective but has some limitations in neuroprotection. Vascular endothelial growth factor(VEGF)-B is functionally relatively inert in the VEGF family, and unlike pro-angiogenic VEGF-A, VEGF-B shows functional inertia in angiogenesis but exhibits significant neuroprotective effects. VEGF-B is a potent anti-apoptotic, antioxidant factor that can regulate the expression of apoptotic genes and enhance the expression of glutamic acid decarboxylase 1 by binding to VEGFR-1 to activate the ERK1/2 or Akt pathway, in addition to decreasing the expression of glutamate, resulting in retinal neuroprotective effects. In this article, the protective effects of VEGF-B on retinal neuronal cells were reviewed to provide new ideas for the treatment of retina-associated diseases.
6.Clinical application progress of femtosecond laser-assisted in situ keratomileusis
Xiaopeng LIU ; Fangfang SUN ; Xiaoxuan WANG ; Yulin LEI
International Eye Science 2025;25(7):1116-1121
With the continuous development of refractive surgery, people's focus has gradually shifted from improving vision to improving visual quality, and personalized laser-assisted in situ keratomileusis(LASIK)surgery has gradually become people's preferred choice. Femtosecond laser-assisted keratoplasty provides better advantages for personalized LASIK surgery. This article mainly introduces the commonly used femtosecond laser-assisted personalized LASIK surgery(FS-LASIK)in recent years, such as wavefront-optimized, wavefront-guided, topography-guided, Q value-guided(aspheric cutting), personalized surgery “Wavelight Plus” and personalized surgery when correcting patients with age-related inadequate accommodation. This article focuses on analyzing the advantages and disadvantages of different personalized FS-LASIK, as well as the research progress in recent years, and also focuses on comparing the differences between different personalized surgeries.
7.Research progress on the relationship between adverse childhood experiences and cardiovascular diseases
LEI Wenqi,SUN Wenjie,SUN Jingyuan,WANG Yiru,SUN Xianghui,SHAO Jinang,Ma Yanan
Chinese Journal of School Health 2025;46(1):148-152
Abstract
To understand the relationship between cardiovascular disease (CVD) and adverse childhood experiences (ACEs), the present review aims to describe the burden and influencing factors of CVD, epidemiological characteristics and burden of ACEs, current research on the relationship between ACEs and CVD, and the mechanism of ACEs leading to CVD. It is proposed that further assessment of the relationship is warranted through identifying blood biomarkers, conducting prospective cohort studies and intervention studies. Such efforts would provide valuable scientific insights for primary prevention strategies for cardiovascular disease.
8.Design, synthesis and anti-Alzheimer's disease activity evaluation of cinnamyl triazole compounds
Wen-ju LEI ; Zhong-di CAI ; Lin-jie TAN ; Mi-min LIU ; Li ZENG ; Ting SUN ; Hong YI ; Rui LIU ; Zhuo-rong LI
Acta Pharmaceutica Sinica 2025;60(1):150-163
19 cinnamamide/ester-triazole compounds were designed, synthesized and evaluated for their anti-Alzheimer's disease (AD) activity. Among them, compound
9.Neutrophil activation is correlated with acute kidney injury after cardiac surgery under cardiopulmonary bypass
Tingting WANG ; Yuanyuan YAO ; Jiayi SUN ; Juan WU ; Xinyi LIAO ; Wentong MENG ; Min YAN ; Lei DU ; Jiyue XIONG
Chinese Journal of Blood Transfusion 2025;38(3):358-367
[Objective] To explore the relationship between neutrophil activation under cardiopulmonary bypass (CPB) and the incidence of cardiac surgery-associated acute kidney injury (CS-AKI). [Methods] This prospective cohort study enrolled adult patients who scheduled for cardiac surgery under CPB at West China Hospital between May 1, 2022 and March 31, 2023. The primary outcome was acute kidney injury (AKI). Blood samples (5 mL) were obtained from the central vein before surgery, at rewarming, at the end of CPB, and 24 hours after surgery. Neutrophils were labeled with CD11b, CD54 and other markers. To assess the effect of neutrophils activation on AKI, propensity score matching (PSM) was employed to equilibrate covariates between the groups. [Results] A total of 120 patients included into the study, and 17 (14.2%) developed AKI. Both CD11b+ and CD54+ neutrophils significantly increased during the rewarming phase and the increases were kept until 24 hours after surgery. During rewarming, the numbers of CD11b+ neutrophils were significantly higher in AKI compared to non-AKI (4.71×109/L vs 3.31×109/L, Z=-2.14, P<0.05). Similarly, the CD54+ neutrophils counts were also significantly higher in AKI than in non-AKI before surgery (2.75×109/L vs 1.79×109/L, Z=-2.99, P<0.05), during rewarming (3.12×109/L vs 1.62×109/L, Z=-4.34, P<0.05), and at the end of CPB (4.28×109/L vs 2.14×109/L, Z=-3.91, P<0.05). An analysis of 32 matched patients (16 in each group) revealed that CD11b+ and CD54+ neutrophil levels of AKI were 1.74 folds (4.83×109/L vs 2.77×109/L, Z=-2.72, P<0.05) and 2.34 folds (3.32×109/L vs 1.42×109/L, Z=-4.12, P<0.05), respectively, of non-AKI at rewarming phase. [Conclusion] Neutrophils are activated during CPB, and they can be identified by CD11b/CD54 markers. The activated neutrophils of AKI patients are approximately 2 folds of non-AKI during the rewarming phase, with disparity reached peak between groups during rewarming. These findings suggest the removal of 50% of activated neutrophils during the rewarming phase may be effective to reduce the risk of AKI.
10.Effect of Gynostemma pentaphyllum Alcohol Extract on Glucose and Lipid Metabolism Disorders in db/db Mice Based on Transcriptomics and Gut Microbiota
Yifei ZHU ; Lei DING ; Wei LIU ; Yahui SUN ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):80-89
ObjectiveTo investigate the efficacy and underlying mechanisms of Gynostemma pentaphyllum alcohol extract in improving glucose and lipid metabolism disorders in db/db mice through transcriptomics and gut microbiota analysis. MethodsEighteen db/db mice were randomly assigned to the model(DM) group, metformin(MET) group, and G. pentaphyllum alcohol extract(GP) group, with six mice in each group, based on stratification of fasting blood glucose and body weight. An additional six db/m mice were selected as the normal control(NC) group. Mice in the NC and DM groups were administered deionized water (10 mL·kg-1) daily. The MET group received metformin (0.195 g·kg-1) by gavage. The GP group was treated with G. pentaphyllum alcohol extract (3.9 g·kg-1) by gavage for six weeks. Fasting blood glucose was measured every two weeks. After six weeks of intervention, serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were assessed. Enzyme-linked immunosorbent assay (ELISA) was used to measure insulin (FINS), adiponectin (ADP), and tumor necrosis factor-α (TNF-α). Hematoxylin-eosin (HE) staining was used to observe liver histomorphology, periodic acid-Schiff (PAS) staining was employed to assess hepatic glycogen synthesis, and Oil Red O staining was used to detect hepatic lipid deposition. Liver transcriptomic data were used to identify differentially expressed genes in the liver and conduct enrichment analysis. Real-time PCR was employed to verify the expression levels of adiponectin gene (Adipoq), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), glucokinase (GCK), forkhead box (Fox)O1, FoxO3, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6PC). Metagenomic sequencing was conducted to analyze changes in gut microbiota composition. ResultsCompared with the NC group, the DM group exhibited significantly elevated fasting blood glucose (P<0.01), serum AST, ALT, TC, TG, LDL-C, and HDL-C (P<0.01). FINS, homeostatic model assessment for insulin resistance (HOMA-IR), and the inflammatory cytokine TNF-α were significantly increased (P<0.01), while ADP was significantly decreased (P<0.05). Histological analysis confirmed severe hepatic steatosis and excessive lipid accumulation in the DM group, along with markedly reduced glycogen synthesis. Compared with the DM group, the GP group showed significantly decreased fasting blood glucose (P<0.01), reduced serum TC, LDL-C, and HDL-C levels (P<0.05), significantly decreased serum TG and AST levels (P<0.01), significantly reduced FINS, HOMA-IR, and TNF-α levels (P<0.01), and significantly increased ADP (P<0.01). Hepatic steatosis and lipid deposition were significantly alleviated, while glycogen synthesis was markedly enhanced. Transcriptomic differential and enrichment analyses suggested that the mechanisms by which G. pentaphyllum alcohol extract improved hepatic glucose and lipid metabolism in db/db mice may involve regulation of the AMPK and FoxO signaling pathways. Real-time PCR results confirmed that expression of PGC-1α, PEPCK, G6PC, FoxO1, and FoxO3 was significantly downregulated following treatment with G. pentaphyllum alcohol extract (P<0.05, P<0.01), whereas mRNA expression of Adipoq, PPARα, GCK, and AMPK was significantly upregulated (P<0.05, P<0.01). Metagenomic analysis showed that the relative abundance of Lactobacillus, Alistipes, and Akkermansia species was higher in the GP group than in the DM group. ConclusionG. pentaphyllum alcohol extract may improve glucose and lipid metabolism disorders in db/db mice by regulating the hepatic AMPK/PPARα pathway to suppress lipid deposition and alleviate hepatic steatosis, by inhibiting gluconeogenesis through the AMPK/PGC-1α and FoxO pathways to lower fasting blood glucose, and by increasing the abundance of beneficial gut bacteria such as Lactobacillus, Alistipes, and Akkermansia to restore gut microbiota balance.


Result Analysis
Print
Save
E-mail