1.Dendropanax morbifera Extract Protects Cardiomyocytes against Hypoxia/Reoxygenation Injury by Inhibition of Reactive Oxygen Species Generation and Calcium Perturbation
Leejin LIM ; Sujin JU ; Heesang SONG
Natural Product Sciences 2019;25(2):136-142
Ischemia/reperfusion-induced myocardial injury is the main cause of acute myocardial infarction. Dendropanax morbifera Léveille has been used in traditional medicines for the treatment of various diseases such as headache, infectious diseases, and general debility. However, the effect of extract from D. morbifera (EDM) on myocardial ischemic injury is still unknown. In this study, the effects of EDM on neonatal rat cardiomyocytes with hypoxia/reoxygenation (H/R) injury were investigated. The viability of cardiomyocytes with H (30 min)/R (1 h) decreased; however, treatment with EDM significantly inhibited H/R injury-induced cardiomyocyte death. Further, we observed that reactive oxygen species (ROS) generation and intracellular calcium concentration (Ca²⁺ᵢ) were significantly reduced in EDM-treated cardiomyocytes compared with that in H/R-injured positive control. In addition, western blotting results showed that EDM attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. These results suggest that EDM ameliorates ROS generation and Ca²⁺ᵢ homeostasis to prevent dysregulation of calcium regulatory proteins in the heart, thereby exerting cardioprotective effects and reducing hypoxia-induced cardiomyocyte damage, which verifies the potential use of EDM as a new therapeutic agent for the treatment of myocardial ischemic injury.
Animals
;
Blotting, Western
;
Calcium
;
Communicable Diseases
;
Headache
;
Heart
;
Homeostasis
;
Myocardial Infarction
;
Myocytes, Cardiac
;
Rats
;
Reactive Oxygen Species
;
Ryanodine Receptor Calcium Release Channel
2.Dendropanax morbifera Extract Inhibits Intimal Hyperplasia in Balloon-Injured Rat Carotid Arteries by Modulating Phenotypic Changes in Vascular Smooth Muscle Cells
Leejin LIM ; Juyeong JO ; Sang Pil YOON ; Inyoub JANG ; Young-Jae KI ; Dong-Hyun CHOI ; Heesang SONG
Natural Product Sciences 2020;26(1):71-78
The plant Dendropanax morbifera Léveille is effective folk medicines for the treatment of several conditions, such as infectious diseases, skin diseases, and other illnesses. Although the inhibitory effects of D. morbifera on the proliferation and migration of vascular smooth muscle cells (VSMCs) have been shown in our previous study, its effects in vivo remain to be elucidated. In this study, we aimed to investigate the protective effects of the extracts from D. morbifera (EDM) on neointimal hyperplasia of rat carotid artery and explore the underlying mechanisms. We observed that the ratio of intima to media thickness (I/M) was significantly decreased in the EDM-treated groups by ~80% compared to that of the control. The expression of Ki-67 and proliferating cell nuclear antigen was decreased by ~70% in the EDM-treated groups compared to that of the control. In addition, matrix metalloproteinase (MMP)2 and MMP9 significantly reduced in the neointimal layer of the EDM-treated groups. Moreover, the decreased levels of contractile phenotypic markers of VSMCs, such as α-smooth muscle actin, myocardin, and smooth muscle-myosin heavy chain, were successfully restored by EDM treatment. Furthermore, the levels of synthetic phenotypic markers, cellular retinal binding protein 1 and connexin 43 were also restored to normal levels. These results suggest that EDM inhibits vascular neointimal hyperplasia induced by balloon injury in rats via phenotypic modulation of VSMCs. Therefore, EDM may be a potential drug candidate for the prevention of restenosis.