1.Immunocytochemical Study on the Monoaminergic Innervation of Diencephalic Visual Structures in the Squirrel Monkey.
Journal of the Korean Ophthalmological Society 1996;37(4):643-655
This study was for investigating relations between distributions of monoamines-norepinephrine, serotonin, and dopamine-on the visual system and their functions. Distributions of these monoamines in the lateral geniculate body, pulvinar, lateral posterior nucleus, and suprachiasmatic nucleus were investigated. Brain of a squirrel monkey was removed and frozen sectioned. Immunocytochemical study was performed for the tissue of the brain. Results showed that the anterior part of the lateral geniculate body contained more monoamines than the posterior part. More serotonins were distrbuted at the magnocellular part, and more dopamines were found at the parvocellular part. In pulvinar, more norepinephrines were distributed at the medial part, while serotonins were evenly distributed at all parts. In lateral posterior nucleus and suprachiasmatic nucleus, three kinds of monoamines were distributed with high density. Among the three, density of the serotonin showed the highest value. The lateral geniculate body relates with visual perception such as visual acuity, form and color perception, and stereopsis, while the pulvinar relates with visual functions, such as visual attention, sensory integration, and differentiation. Since norepinephrine and serotonine are distributed with high density in the pulvinar than in the lateral geniculate body those two monoamines are expected to playa major role for visual functions. Inferior part of the pulvinar relates with visual imagination, and the lateral posterior nucleus relates with integration of visual sensory. Relatively high distribution of dopamine in these two parts means that dopamine may playa major role for visual imagination and integration. As suprachiasmatic nucleus relates with controlling biorhythm, dense distribution of monoamines in suprachiasmatic nucleus implies that the monoamines may work for controlling biorhythm.
Brain
;
Color Perception
;
Depth Perception
;
Dopamine
;
Geniculate Bodies
;
Imagination
;
Lateral Thalamic Nuclei
;
Norepinephrine
;
Periodicity
;
Pulvinar
;
Saimiri*
;
Sciuridae*
;
Serotonin
;
Suprachiasmatic Nucleus
;
Visual Acuity
;
Visual Perception
2.Immunohistochemical Study on the Nitric Oxide Synthase in the Developing Rat Brain.
Hwa Young LEE ; Woo Sung PARK ; Kyung Hoon LEE ; Kyung Han PARK ; Choong Ik CHA ; Ka Yong CHANG ; Sang Ho BAIK ; Sa Sun CHO
Korean Journal of Anatomy 1998;31(4):525-534
Nitric oxide(NO) is thought to play an important role in development and plasticity of brain. In this study, we aimed to examine the expression of neuronal NOS and NADPH-diaphorase (NADPH-d) activity in the developing rat brain. The results show that there is a great variation in the time of appearance of the earliest NOS containing cells depending on their location: At the 15th embryonic day weakly stained cells were present in caudate-putamen, and neurons in the sensory trigeminal nucleus and the solitary nucleus displayed an intense staining. The NOS neurons in orbital neocortex, bed nucleus of stria terminalis, paraventricular hypothalamic nucleus, lateral hypothalamic area and mammillary body appeared first at the 18th embryonic day. The supraoptic nucleus and superior and inferior colliculi also weakly labeled at the 18th embryonic day, At the loth embryonic day, positive cells appeared in horizontal limb of diagonal band, anterior olfactory nucleus and parafascicular thalamic nucleus. In the cerebellum, weak NOS staining was present in fibers and cells situated below Purkinje cert layer. The Purkinje cell layer displayed a weak, rather diffuse activity throughout the cerebellum at postnatal day 0. At the 4th postnatal day. the reaction product in the Purkinje cell layer became more distinct. At the 10th postnatal day, the inner part of molecular layer became populated by NOS positive basket cells, and the reaction products on the Purkinje cells began to disappear. The present results showed that NOS in the rat brain is expressed in different populations of neurons at different stages of development. This expression pattern of NOS suggests that NO may play a role in the developmental remodelling of the mammalian brain.
Animals
;
Brain*
;
Cerebellum
;
Extremities
;
Hypothalamic Area, Lateral
;
Inferior Colliculi
;
Intralaminar Thalamic Nuclei
;
Mamillary Bodies
;
Neocortex
;
Neurons
;
Nitric Oxide Synthase*
;
Nitric Oxide*
;
Orbit
;
Paraventricular Hypothalamic Nucleus
;
Plastics
;
Purkinje Cells
;
Rats*
;
Septal Nuclei
;
Solitary Nucleus
;
Supraoptic Nucleus
;
Trigeminal Nuclei
3.Effect of (R-)-N6-phenylisopropyladenosine (RPIA) Pretreatment on the alteration of Netural Cell dhesion Molecule.
Seon Chool HWANG ; Se Jin HWANG ; Won Gil CHO ; Chang Bae JIN ; Ho Sam CHUNG
Journal of Korean Epilepsy Society 1999;3(1):22-32
BACKGROUND: Various neuronal and glial factors which participate in neural differentiation, including neural cell adhesion molecule (NCAM), are upregulated in pathogenesis of temporal lobe epilesy (TLE).This study aimed to investigate hte effect of (R-)-N6-phenylisopropyladenosine (RPIA), an adenosine A1 receptor agonist, on the morphological alteration of NCAM immunoreactivity (IR) in limbic system of Kainic acid (KA)-induced epileptic rats. METHODS: Experiment animals were divided into control group, KA treatment only (10 mg/kg. i.p.)group, and RPIA pretreatment (100 microgram/kg. i,p, 10 min prior to injection of KA) group. Animals were sacrificed at 24 hours and 1 week after KA treatment. Luxol fast blue-cresyl violet stain for histopathological observation, and NCAM immunohistochemistry to study alteration of NCAM IR in limbic system were performed. RESULTS: Neuronal loss in CA1 and CA3areas of hippocampus, piridorm cortex, basolateral amygdala nucleus and lateral dorsal thalamic nucleus were induced by KA unjection, and thoes were reduced by RPIA pretreatment. Inrease of NCAM-IR was observed in interneurons of all hippocampal areas. except CA2 area, pirform cortex and basolateral amygdala nucleus at 24 hours after KA injection. and increased NCAM-IR was observed in cell membrane and processes of neuroglia, dentate granule cells and pyramidal cells in CA1 area of hippocampus. and neurons in piriform cortex, amygdala and lateral dorsal thalamic nucleus 1 week after KA injection, but those changes were milder than those at 24 hours after KA injection. RPIA pretreatment significantly reduced KA-induced NCAM-IR in hippocampal CA3, CA1 area, piriform cortex, amtgdala and lateral dorsal thalamic nucleus. CONCLUSION: We suggest that decrease of NCAM immunoreactivity is associated with neuprotective effects of RPIA on limbic system against KA neurotoxiciy.
Amygdala
;
Animals
;
Cell Membrane
;
Epilepsy, Temporal Lobe
;
Hippocampus
;
Immunohistochemistry
;
Interneurons
;
Kainic Acid
;
Lateral Thalamic Nuclei
;
Limbic System
;
Neural Cell Adhesion Molecules
;
Neuroglia
;
Neurons
;
Pyramidal Cells
;
Rats
;
Receptor, Adenosine A1
;
Temporal Lobe
;
Viola
4.Characteristic neuronal firing interspike intervals in laterodorsal thalamic nuclei induced by tetanization of rat caudate putamen: possible relations to hippocampal electroencephalogram changes.
Qing LIU ; Dan HAN ; Sheng WANG ; Zu-Yu ZOU
Acta Physiologica Sinica 2005;57(5):573-586
The purpose of the present work was to study the effect of acute tetanization of the right caudate putamen nucleus (ATRC) on single neuronal interspike intervals (ISIs) in both laterodorsal thalamic nuclei (LDi), and electroencephalogram (EEG) wave interpeak intervals (IPIs) in both hippocampi (HPCi). Experiments were performed on 21 male Sprague-Dawley rats weighing 150~250 g. The seizures were induced by the ATRC (60 Hz, 2 s, 0.4~0.6 mA). Quadruple recordings were simultaneously carried out: two for single unit recordings from both LDi, and two for EEG recordings from both HPCi. The ATRC induced: (1) An interactive epileptic electrical network reconstructed in bilateral HPCi, which was driven by primary afterdischarges of single LD neuron. (2) A symmetric mirror-like ISI spot distribution of the LD neuronal firing before and after tetanus. (3) Gradually prolonged LD neuronal discharge intermittence was coherent with synchronous hippocampal EEG activities on the contralateral side. (4) Single LD neuronal spikes were phase- and time-locked to 20~25 Hz gamma oscillations in contralateral HPC. It suggests a particular temporal code patterning of single LD neuronal firing and its relationships to hippocampal EEG wave code in time series, the latter implies the LD neuronal encoding mechanisms of ATRC-induced epileptic electrical network in bilateral HPCi.
Action Potentials
;
physiology
;
Animals
;
Caudate Nucleus
;
physiology
;
Electric Stimulation
;
methods
;
Electroencephalography
;
Epilepsy
;
etiology
;
physiopathology
;
Hippocampus
;
physiology
;
Lateral Thalamic Nuclei
;
physiology
;
Male
;
Nerve Net
;
physiology
;
Neurons
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Reaction Time
;
physiology
5.Microinjection of adrenomedullin into rostral ventrolateral medulla increases blood pressure, heart rate and renal sympathetic nerve activity in rats.
Acta Physiologica Sinica 2002;54(6):460-466
The present study was undertaken to examine the effects of microinjection of adrenomedullin (AM) into rostral ventrolateral medulla (RVLM) on mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) in 34 anesthetized Sprague-Dawley rats. The results obtained are as follows. (1) Following microinjection of AM (10 micromol/L, 200 nl) into the RVLM, MAP, HR and RSNA were significantly increased from 99.09+/-3.32 mmHg, 370.78+/-7.84 bpm and 100+/-0% to 113.57+/-3.64 mmHg (P>0.001), 383.28+/-7.38 bpm (P>0.001) and 123.72+/-2.74% (P>0.001), respectively. (2) Pretreatment with microinjection of calcitonin gene-related peptide receptor antagonist CGRP8-37 (100 micromol/L, 200 nl) did not change the effects of AM. (3) L-arginine (100 mg/kg, 0.2 ml, i.v.), an NO precursor, abolished the effects of AM. This study demonstrates that AM acting at the rostral ventrolateral medulla may produce significant cardiovascular responses, the effects are not mediated by CGRP receptor but may be abolished by NO.
Adrenomedullin
;
administration & dosage
;
pharmacology
;
Animals
;
Blood Pressure
;
drug effects
;
Heart Rate
;
drug effects
;
Kidney
;
innervation
;
Lateral Thalamic Nuclei
;
drug effects
;
Medulla Oblongata
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Sympathetic Nervous System
;
drug effects
;
physiology
6.Location of CNS Labeled Neurons Innervating the Rat Thymus Using the Pseudorabies Virus.
Duck Si BYUN ; Sun Young SIN ; Ji Eun SEO ; Chang Hyun LEE ; Bong Hee LEE ; Moo Sam LEE
Korean Journal of Physical Anthropology 1999;12(1):123-137
This experimental studies was to investigate the location of CNS labeled neurons following injection of pseudorabies virus (PRV), Bartha strain, into the rat thymus. After survival times of 96~120 hours following injection of PRV, the rats were perfused, and their spinal cord and brain were frozen sectioned(30micrometer). These sections were stained by PRV immunohistochemical staining method, and observed with light microscope The results were as follows: 1. The PRV labeled spinal cord segments projecting to the rat thymus were founded in cervical and thoracic segments. Densely labeled areas of each spinal cord segment were founded in lamina V, VII, X, intermediolateral nucleus and dorsal nucleus. 2. In the rhombencephalon, PRV labeled neurons projecting to the thymus were founded in the A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nucleus, rostroventro-lateral reticular nucleus, medullary reticular nucleus, area postrema, nucleus solitary tract, nucleus raphe obscurus, nucleus raphe pallidus, nucleus raphe magnus, gigantocellular reticular nucleus, lateral paragigantocellular nucleus and spinal trigeminal nucleus. 3. In the mesencephalon, PRV labeled neurons were founded in parabrachial nucleus, Kolliker-Fuse nucleus, central gray matter, substantia nigra, nucleus dorsal raphe, A8 dopamin cells of retrorubral field, Edinger-Westphal nucleus, locus coeruleus, subcoeruleus nucleus and A5 noradrenalin cells. 4. In the prosencephalon, PRV labeled neurons were founded in reuniens thalamic nucleus, paraventricular thalamic nucleus, precommissural nucleus, paraventricular hypothalamic nucleus, anterior hypothalamic nucleus, lateral hypothalamic nucleus, preoptic hypothalamic nucleus, retrochiasmatic area, arcuate nucleus, dorsomedial hypothalamic nucleus and ventromedial hypothalamic nucleus. These results suggest that PRV labeled neurons of the spinal cord projecting to the rat thymus might be the neurons related to the viscero-somatic sensory and sympathetic preganglionic neurons, and PRV labeled neurons of the brain may be the neurons response to the movement of smooth muscle in blood vessels. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory system monitoring the internal environment. These observations provide evidence for previously unknown projections from spinal cord and brain to the thymus which may be play an important role in the regulation of thymic function.
Animals
;
Anterior Hypothalamic Nucleus
;
Arcuate Nucleus
;
Area Postrema
;
Blood Vessels
;
Brain
;
Dorsomedial Hypothalamic Nucleus
;
Herpesvirus 1, Suid*
;
Hypothalamic Area, Lateral
;
Immunohistochemistry
;
Locus Coeruleus
;
Mesencephalon
;
Midline Thalamic Nuclei
;
Muscle, Smooth
;
Neurons*
;
Paraventricular Hypothalamic Nucleus
;
Prosencephalon
;
Pseudorabies*
;
Rats*
;
Reflex
;
Rhombencephalon
;
Spinal Cord
;
Substantia Nigra
;
Thymus Gland*
;
Trigeminal Nucleus, Spinal
;
Ventromedial Hypothalamic Nucleus
7.Cloning and localization of two forms of voltage-dependent calcium channel beta3 subunit gene.
Hyung Lae KIM ; Hyun KIM ; Sun Hwa PARK ; Dong Yeon KIM ; Young Suk SUH
Korean Journal of Anatomy 1998;31(2):253-261
Voltage-dependent calcium channel (VDCC) is composed of at least four subunits: alpha1, alpha2, beta, delta. Four mammalian beta subunit isoforms (beta1, beta2, beta3 and beta4) have been identified from nervous system. beta subunit accelerates the kinetics of activation (channel openning) and inactivation (channel closure), and regulates the channel activity by phosphorylation through various signal transduction mechanisms. We have cloned three cDNAs (RB8, RB10, and RB11) encoding beta3 subunit of voltage-dependent calcium channel from rat cDNA library using the oligonucleotides of which sequences obtained from the highly conserved regions of rat b subunits. The RB8 and RB10 (rtB3a) encode a same protein of 484 amino acids with estimated Mr of 54,571 Da, which was identical to beta3 subunit gene previously reported. The RB11 (rtbBb) is diffferent from RB10 at N-terminal region but shares common amino acid sequences from the glycine, the 16th amino acid of RB10, to the end of the gene. Open reading frame of RB10 encodes a 483 amino-acid protein with a predicted Mr of 54,473 Da. The RB10 and RB11 are suspected to be alternatively spliced variants from a single b3 subunit gene. The existence of the variants was confirmed by RT-PCR using the oligonucleotide primers from the specific sequences of each variant. The expression patterns of VDCC beta3 (rtB3a) and its specific variant (rtB3b) were investigated in the rat brain by in situ hybridization histochemistry. The mRNAs for rtB3a and rtB3b were exclusively expressed in the nervous system. In the brain, strong expression of both mRNAs (rtB3a and rtB3b) was found in the medial habenular nucleus of thalamus, hippocampus, dentate gyrus, olfactory bulb and cerebellum. But significant discrepancy of expression was found in the lateral posterior thalamic nucleus and olfactory bulb. From these results, it is suspected that newly cloned VDCC variant (rtB3b) should be the alternatively spliced variant of VDCC beta3 gene.
Alternative Splicing
;
Amino Acid Sequence
;
Amino Acids
;
Animals
;
Brain
;
Calcium Channels*
;
Calcium*
;
Cerebellum
;
Clone Cells*
;
Cloning, Organism*
;
Dentate Gyrus
;
DNA Primers
;
DNA, Complementary
;
Gene Library
;
Glycine
;
Habenula
;
Hippocampus
;
In Situ Hybridization
;
Kinetics
;
Lateral Thalamic Nuclei
;
Nervous System
;
Olfactory Bulb
;
Oligonucleotides
;
Open Reading Frames
;
Phosphorylation
;
Protein Isoforms
;
Rats
;
RNA, Messenger
;
Signal Transduction
;
Thalamus
8.Thalamic Volumes in Patients with Untreated First-Episode Schizophrenia.
Sung Yun CHO ; Chul Eung KIM ; Jeong Seop LEE ; Jae Nam BAE ; Jin Soh PARK ; Min Hee KANG
Journal of Korean Neuropsychiatric Association 2011;50(6):450-457
OBJECTIVES: Thalamic structural changes were implicated in the pathophysiology of schizophrenia by some studies. So, we investigated the differences in thalamic volumes between previously untreated patients with first-episode schizophrenia and controls. METHODS: Thalamic volumes of 24 subjects with schizophrenia and 24 controls were measured from their T1-weighted coronal magnetic resonance images using manual tracing. The thalamus was further segmented into regions that roughly reflected individual thalamic nuclei. RESULTS: Comparing to the controls, significantly smaller volumes were found in the left posterior subdivision of thalamus in patient group. Tendency of volume differences were also seen in right posterior subdivision of thalamus in patient group. These regions primarily comprised the pulvinar, a thalamic nucleus thought to be an important component of aberrant circuitry in schizophrenia. CONCLUSION: Our findings suggest the possibility of a volumetric alteration of the thalamus in patients with first-episode schizophrenia.
Humans
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy
;
Pulvinar
;
Schizophrenia
;
Thalamus
9.Fluid-Attenuated Inversion Recovery Hypointensity of the Pulvinar Nucleus of Patients with Alzheimer Disease: Its Possible Association with Iron Accumulation as Evidenced by the T2* Map.
Won Jin MOON ; Hee Jin KIM ; Hong Gee ROH ; Jin Woo CHOI ; Seol Heui HAN
Korean Journal of Radiology 2012;13(6):674-683
OBJECTIVE: We hypothesized that prominent pulvinar hypointensity in brain MRI represents the disease process due to iron accumulation in Alzheimer disease (AD). We aimed to determine whether or not the pulvinar signal intensity (SI) on the fluid-attenuated inversion recovery (FLAIR) sequences at 3.0T MRI differs between AD patients and normal subjects, and also whether the pulvinar SI is correlated with the T2* map, an imaging marker for tissue iron, and a cognitive scale. MATERIALS AND METHODS: Twenty one consecutive patients with AD and 21 age-matched control subjects were prospectively included in this study. The pulvinar SI was assessed on the FLAIR image. We measured the relative SI ratio of the pulvinar to the corpus callosum. The T2* values were calculated from the T2* relaxometry map. The differences between the two groups were analyzed, by using a Student t test. The correlation between the measurements was assessed by the Pearson's correlation test. RESULTS: As compared to the normal white matter, the FLAIR signal intensity of the pulvinar nucleus was significantly more hypointense in the AD patients than in the control subjects (p < 0.01). The pulvinar T2* was shorter in the AD patients than in the control subjects (51.5 +/- 4.95 ms vs. 56.5 +/- 5.49 ms, respectively, p = 0.003). The pulvinar SI ratio was strongly correlated with the pulvinar T2* (r = 0.745, p < 0.001). When controlling for age, only the pulvinar-to-CC SI ratio was positively correlated with that of the Mini-Mental State Examination (MMSE) score (r = 0.303, p < 0.050). Conversely, the pulvinar T2* was not correlated with the MMSE score (r = 0.277, p = 0.080). CONCLUSION: The FLAIR hypointensity of the pulvinar nucleus represents an abnormal iron accumulation in AD and may be used as an adjunctive finding for evaluating AD.
Aged
;
Alzheimer Disease/*metabolism/*pathology
;
Female
;
Humans
;
Iron/*metabolism
;
*Magnetic Resonance Imaging
;
Male
;
Pulvinar/metabolism/*pathology
10.Regional Gray Matter Volume Reduction Associated with Major Depressive Disorder: A Voxel-Based Morphometry.
Investigative Magnetic Resonance Imaging 2015;19(1):10-18
BACKGROUND AND PURPOSE: The association between the low emotional regulation and the brain structural change of major depressive disorder (MDD) has been proposed, but the voxel-based morphometry (VBM) studies on female MDD are rare. The purpose of the present study was to show the regional volume changes of gray matter (GM) in female patients with MDD by optimized VBM. METHODS: To control subjects homogeneity, twenty female MDD patients and age, sex matched 21 normal controls were included for the VBM analysis. To identify the change of regional gray matter volume (GMV), the optimized VBM was performed with T1 MRIs. The amounts of gray/white matter and intracranial cavity volumes (ICV) were measured. The analysis of covariance (ANCOVA) and partial correlation analyses covariate with age and ICV were applied for VBM. RESULTS: The age and ICV distributions were similar between the two groups. In the ANCOVA, the total GMV of MDD was smaller than that of normal controls. In the VBM, regional GMV was relatively decreased in the limbic system (amygdalae, ambient gyri, hippocampi heads, subiculum, posterior parahippocampal gyri, pulvinar nuclei, dorsal posterior cingulate gyri, and left pregenual cingulate gyrus). The lingual gyri, short insular gyri, right fusiform gyrus, and right inferior frontal gyrus were also showed decreased regional GMV. CONCLUSION: The results of this study indicate that the female MDD is mainly associated with the structural deficits of the limbic system and limbic system related cortices, which were known to the center of emotions.
Brain
;
Depressive Disorder, Major*
;
Female
;
Head
;
Hippocampus
;
Humans
;
Limbic System
;
Magnetic Resonance Imaging
;
Pulvinar