1.Natriuretic peptide precursor C coding gene contributes to zebrafish angiogenesis.
Jing-Jing ZHANG ; Xin WANG ; Dong LIU
Acta Physiologica Sinica 2017;69(1):11-16
This study aimed to investigate the expression of the natriuretic peptide precursor C coding gene nppc and its role in angiogenesis during embryonic period of the zebrafish. Whole mount in situ hybridization was performed to detect the expression pattern of nppc. nppc specific morpholino and nppc mRNA were injected respectively into the one-cell stage embryo to specifically knock-down and rescue the expression of nppc in Tg (flk1:GFP) and Tg (fli1a:nGFP) transgenic lines. The morphology and endothelial cell number of intersegmental vessel (ISV) were analyzed after imaging using the laser scanning confocal microscope. The results revealed that nppc was expressed in the brain, heart and vasculature of zebrafish larvae at 24 and 48 hours post-fertilization (hpf). Knock-down of nppc affected the development of ISV. Endothelial cell number was reduced after the knock-down of nppc. These results suggest that nppc controls zebrafish angiogenesis by affecting the endothelial cell proliferation and migration.
Animals
;
Animals, Genetically Modified
;
Cell Movement
;
Cell Proliferation
;
Endothelial Cells
;
physiology
;
Gene Knockdown Techniques
;
Heart
;
physiology
;
Larva
;
Natriuretic Peptides
;
genetics
;
physiology
;
Neovascularization, Physiologic
;
RNA, Messenger
;
Zebrafish
;
genetics
;
physiology
;
Zebrafish Proteins
;
genetics
;
physiology
2.Advances on study of Lucilia species in estimating postmortem interval in forensic medicine.
Journal of Forensic Medicine 2010;26(4):287-289
Sarcosaphagous insects are very important to investigate some criminal cases. They are significant useful in estimating post-mortem interval (PMI) and corpse transfer post-mortem. Lucilia are very common sarcosaphagous insects. They like sunshine and are usually the earliest to touch the cadaver. These characteristics and others such as the stages of their larvae development can offer good evidences for criminal case investigation. This paper summarizes details of their application for estimating postmortem interval in recent years and reviews the methods to identify species and to determine the age of adult Lucilia with molecular biology and entomological morphology.
Animals
;
DNA, Mitochondrial/genetics*
;
Diptera/physiology*
;
Entomology/methods*
;
Feeding Behavior
;
Forensic Medicine/methods*
;
Larva/physiology*
;
Polymerase Chain Reaction/methods*
;
Postmortem Changes
;
Seasons
;
Sequence Analysis, DNA
;
Species Specificity
;
Weather
3.Repeated Failure in Reward Pursuit Alters Innate Drosophila Larval Behaviors.
Yue FEI ; Dikai ZHU ; Yixuan SUN ; Caixia GONG ; Shenyang HUANG ; Zhefeng GONG
Neuroscience Bulletin 2018;34(6):901-911
Animals always seek rewards and the related neural basis has been well studied. However, what happens when animals fail to get a reward is largely unknown, although this is commonly seen in behaviors such as predation. Here, we set up a behavioral model of repeated failure in reward pursuit (RFRP) in Drosophila larvae. In this model, the larvae were repeatedly prevented from reaching attractants such as yeast and butyl acetate, before finally abandoning further attempts. After giving up, they usually showed a decreased locomotor speed and impaired performance in light avoidance and sugar preference, which were named as phenotypes of RFRP states. In larvae that had developed RFRP phenotypes, the octopamine concentration was greatly elevated, while tβh mutants devoid of octopamine were less likely to develop RFRP phenotypes, and octopamine feeding efficiently restored such defects. By down-regulating tβh in different groups of neurons and imaging neuronal activity, neurons that regulated the development of RFRP states and the behavioral exhibition of RFRP phenotypes were mapped to a small subgroup of non-glutamatergic and glutamatergic octopaminergic neurons in the central larval brain. Our results establish a model for investigating the effect of depriving an expected reward in Drosophila and provide a simplified framework for the associated neural basis.
Acetates
;
pharmacology
;
Animals
;
Animals, Genetically Modified
;
Avoidance Learning
;
physiology
;
Biogenic Amines
;
metabolism
;
Conditioning, Operant
;
physiology
;
Drosophila
;
physiology
;
Drosophila Proteins
;
genetics
;
metabolism
;
Feeding Behavior
;
drug effects
;
physiology
;
Instinct
;
Larva
;
physiology
;
Locomotion
;
drug effects
;
genetics
;
Nervous System
;
cytology
;
Neurons
;
physiology
;
Octopamine
;
metabolism
;
RNA Interference
;
physiology
;
Reward
;
Statistics, Nonparametric
;
Transcription Factors
;
genetics
;
metabolism
4.Anisakiasis: Report of 15 Gastric Cases Caused by Anisakis Type I Larvae and a Brief Review of Korean Anisakiasis Cases.
Woon Mok SOHN ; Byoung Kuk NA ; Tae Hyo KIM ; Tae Joon PARK
The Korean Journal of Parasitology 2015;53(4):465-470
The present study was performed to report 15 anisakiasis cases in Korea and to review the Korean cases reported in the literature. Total 32 Anisakis type I larvae were detected in the stomach of 15 patients by the endoscopy. Single worm was detected from 12 cases, and even 9 larvae were found from 2 cases. Epigastric pain was most commonly manifested in almost all cases, and hemoptysis and hematemesis were seen in 1 case each. Symptom manifestations began at 10-12 hr after eating fish in 73.3% cases. Endoscopy was performed 1-2 days after the symptom onset in most cases. The common conger, Conger myriaster, was the probable infection source in 7 cases. In the review of Korean anisakiasis cases, thus far, total 645 cases have been reported in 64 articles. Anisakis type I larva was the most frequently detected (81.3%). The favorable infection site of larvae was the stomach (82.4%). The common conger was the most probable source of human infections (38.6%). Among the total 404 cases which revealed the age and sex of patients, 185 (45.8%) were males, and the remaining 219 (54.2%) were female patients. The age prevalence was the highest in forties (34.7%). The seasonal prevalence was highest in winter (38.8%). By the present study, 15 cases of gastric anisakiasis are added as Korean cases, and some epidemiological characteristics of Korean anisakiasis were clarified.
Adult
;
Animals
;
Anisakiasis/epidemiology/*parasitology/*veterinary
;
Anisakis/genetics/*isolation & purification/physiology
;
Female
;
Fish Diseases/*parasitology
;
Fishes/classification/parasitology
;
Food Contamination/analysis
;
Humans
;
Larva/genetics/*physiology
;
Male
;
Middle Aged
;
Prevalence
;
Republic of Korea/epidemiology
;
Stomach/parasitology
;
Stomach Diseases/epidemiology/*parasitology
5.microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish
Chang Woo KIM ; Ji Hyuk HAN ; Ling WU ; Jae Young CHOI
Yonsei Medical Journal 2018;59(1):141-147
PURPOSE: microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. MATERIALS AND METHODS: miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 µM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. RESULTS: Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. CONCLUSION: Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration.
Animals
;
Animals, Genetically Modified
;
Cell Count
;
Gene Expression Profiling
;
Gene Expression Regulation/drug effects
;
Gene Knockdown Techniques
;
Green Fluorescent Proteins/metabolism
;
Hair Cells, Auditory/drug effects
;
Hair Cells, Auditory/physiology
;
Larva/drug effects
;
Larva/genetics
;
MicroRNAs/genetics
;
MicroRNAs/metabolism
;
Morpholinos/pharmacology
;
Neomycin/toxicity
;
Regeneration/drug effects
;
Regeneration/genetics
;
Zebrafish/genetics
6.Taurine Transporter dEAAT2 is Required for Auditory Transduction in Drosophila.
Ying SUN ; Yanyan JIA ; Yifeng GUO ; Fangyi CHEN ; Zhiqiang YAN
Neuroscience Bulletin 2018;34(6):939-950
Drosophila dEAAT2, a member of the excitatory amino-acid transporter (EAAT) family, has been described as mediating the high-affinity transport of taurine, which is a free amino-acid abundant in both insects and mammals. However, the role of taurine and its transporter in hearing is not clear. Here, we report that dEAAT2 is required for the larval startle response to sound stimuli. dEAAT2 was found to be enriched in the distal region of chordotonal neurons where sound transduction occurs. The Ca imaging and electrophysiological results showed that disrupted dEAAT2 expression significantly reduced the response of chordotonal neurons to sound. More importantly, expressing dEAAT2 in the chordotonal neurons rescued these mutant phenotypes. Taken together, these findings indicate a critical role for Drosophila dEAAT2 in sound transduction by chordotonal neurons.
Acoustic Stimulation
;
Action Potentials
;
genetics
;
Animals
;
Animals, Genetically Modified
;
Auditory Pathways
;
physiology
;
Calcium
;
metabolism
;
Drosophila
;
genetics
;
Drosophila Proteins
;
genetics
;
metabolism
;
Excitatory Amino Acid Transporter 2
;
genetics
;
metabolism
;
Hearing
;
genetics
;
Larva
;
Luminescent Proteins
;
genetics
;
metabolism
;
Mutation
;
genetics
;
Nervous System
;
cytology
;
Neurons
;
metabolism
7.Role of histone deacetylase activity in the developing lateral line neuromast of zebrafish larvae.
Yingzi HE ; Honglin MEI ; Huiqian YU ; Shan SUN ; Wenli NI ; Huawei LI
Experimental & Molecular Medicine 2014;46(5):e94-
Histone deacetylases are involved in many biological processes and have roles in regulating cell behaviors such as cell cycle entry, cell proliferation and apoptosis. However, the effect of histone deacetylases on the development of hair cells (HCs) has not been fully elucidated. In this study, we examined the influence of histone deacetylases on the early development of neuromasts in the lateral line of zebrafish. Hair cell development was evaluated by fluorescent immunostaining in the absence or presence of histone deacetylase inhibitors. Our results suggested that pharmacological inhibition of histone deacetylases with inhibitors, including trichostatin A, valproic acid and MS-275, reduced the numbers of both HCs and supporting cells in neuromasts. We also found that the treatment of zebrafish larvae with inhibitors caused accumulation of histone acetylation and suppressed proliferation of neuromast cells. Real-time PCR results showed that the expression of both p21 and p27 mRNA was increased following trichostatin A treatment and the increase in p53 mRNA was modest under the same conditions. However, the expression of p53 mRNA was significantly increased by treatment with a high concentration of trichostatin A. A high concentration of trichostatin A also led to increased cell death in neuromasts as detected in a TUNEL assay. Moreover, the nuclei of most of these pyknotic cells were immunohistochemically positive for cleaved caspase-3. These results suggest that histone deacetylase activity is involved in lateral line development in the zebrafish and might have a role in neuromast formation by altering cell proliferation through the expression of cell cycle regulatory proteins.
Animals
;
Apoptosis
;
Cell Proliferation
;
Cyclin-Dependent Kinase Inhibitor Proteins/genetics/metabolism
;
Histone Deacetylase Inhibitors/*pharmacology
;
Histone Deacetylases/*metabolism
;
Histones/metabolism
;
Larva/growth & development/metabolism
;
Lateral Line System/cytology/*growth & development/metabolism
;
Mechanoreceptors/drug effects/*metabolism/physiology
;
RNA, Messenger/genetics/metabolism
;
Zebrafish
;
Zebrafish Proteins/*metabolism