1.Diacylated anthocyanins from purple sweet potato (Ipomoeabatatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet.
Luhong SHEN ; Yang YANG ; Jiuliang ZHANG ; Lanjie FENG ; Qing ZHOU
Journal of Zhejiang University. Science. B 2023;24(7):587-601
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
Mice
;
Animals
;
Hyperuricemia/drug therapy*
;
Diet, High-Fat/adverse effects*
;
Anthocyanins/chemistry*
;
Ipomoea batatas/chemistry*
;
Fructose/adverse effects*
;
Hyperglycemia/drug therapy*
;
Lipids