1.Grading method of inhomogeneity of contrast-enhanced ultrasound for rectal tumors based on gray level co-occurrence matrix.
Yuan LUO ; Hua ZHUANG ; Langkuan QIN ; Jieying ZHAO ; Hao YIN ; Dongquan LIU ; Yuting WU ; Ke LIU ; Hanchuan HU
Journal of Biomedical Engineering 2019;36(6):964-968
Transrectal contrast-enhanced ultrasound (CEUS) is an important examination for rectal tumors. The inhomogeneity of the CEUS images has important clinical significance. However, there is no objective method to evaluate this index. In this study, a method based on gray-level co-occurrence matrix (GLCM) is proposed to extract texture features of images and grade these images according the inhomogeneity. Specific processes include compressing the gray level of the image, calculating the texture statistics of gray level co-occurrence matrix, combining feature selection and principal component analysis (PCA) for dimensionality reduction, and training and validating quadratic discriminant analysis (QDA). After ten cross-validation, the overall accuracy rate of machine classification was 87.01%, and the accuracy of each level was as follows: Grade Ⅰ 52.94%, Grade Ⅱ 96.48% and Grade Ⅲ 92.35% respectively. The proposed method has high accuracy in judging grade Ⅱ and Ⅲ images, which can help to identify the grade of inhomogeneity of contrast-enhanced ultrasound images of rectal tumors, and may be used to assist clinical doctors in judging the grade of inhomogeneity of contrast-enhanced ultrasound of rectal tumors.
Discriminant Analysis
;
Humans
;
Rectal Neoplasms
;
Ultrasonography