1.Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells.
Lei CHANG ; Mengfan LI ; Shipeng SHAO ; Chen LI ; Shanshan AI ; Boxin XUE ; Yingping HOU ; Yiwen ZHANG ; Ruifeng LI ; Xiaoying FAN ; Aibin HE ; Cheng LI ; Yujie SUN
Protein & Cell 2022;13(4):258-280
The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions. However, the molecular machinery underlying these hierarchically organized three-dimensional (3D) chromatin architecture and dynamics remains poorly understood. Here by combining imaging and sequencing, we studied the role of lamin B1 in chromatin architecture and dynamics. We found that lamin B1 depletion leads to detachment of lamina-associated domains (LADs) from the nuclear periphery accompanied with global chromatin redistribution and decompaction. Consequently, the inter-chromosomal as well as inter-compartment interactions are increased, but the structure of topologically associating domains (TADs) is not affected. Using live-cell genomic loci tracking, we further proved that depletion of lamin B1 leads to increased chromatin dynamics, owing to chromatin decompaction and redistribution toward nucleoplasm. Taken together, our data suggest that lamin B1 and chromatin interactions at the nuclear periphery promote LAD maintenance, chromatin compaction, genomic compartmentalization into chromosome territories and A/B compartments and confine chromatin dynamics, supporting their crucial roles in chromatin higher-order structure and chromatin dynamics.
Chromatin
;
Chromosomes
;
Genome
;
Humans
;
Lamin Type B/genetics*
2.Functions of lamin B1 and the new progress of its roles in neurological diseases and tumors.
Siyang LIU ; Yong WU ; Linfei YANG ; Xiaohua LI ; Lihua HUANG ; Xiaowei XING
Chinese Journal of Biotechnology 2018;34(11):1742-1749
Lamin B1 is one of the essential members of the nuclear lamina protein family. Its main function is to maintain the integrity of nuclear skeleton, as well as to participate in the cell proliferation and aging by affecting the chromosome distribution. gene expression, and DNA damage repair. The abnormal expression of lamin B1 is related to certain diseases, including neurological diseases [e.g. neural tube defects (NDTs), adult-onset autosomal dominant leukodystrophy (ADLD)] and tumors (e.g. pancreatic cancer). It is also a potential tumor marker as well as drug target. Further research on lamin B1 will help people understand the molecular mechanism of the emergence and development of neural system diseases and tumors, and define a new future in drug target.
Cell Nucleus
;
Gene Expression
;
Humans
;
Lamin Type B
;
physiology
;
Neoplasms
;
Nervous System Diseases