1.Utility of combining PIVKA-II and AFP in the surveillance and monitoring of hepatocellular carcinoma in the Asia-Pacific region
Do Young KIM ; Bao Nguyen TOAN ; Chee-Kiat TAN ; Irsan HASAN ; Lyana SETIAWAN ; Ming-Lung YU ; Namiki IZUMI ; Nguyen Nguyen HUYEN ; Pierce Kah-Hoe CHOW ; Rosmawati MOHAMED ; Stephen Lam CHAN ; Tawesak TANWANDEE ; Teng-Yu LEE ; Thi Thanh Nguyen HAI ; Tian YANG ; Woo-Chang LEE ; Henry Lik Yuen CHAN
Clinical and Molecular Hepatology 2023;29(2):277-292
Even though the combined use of ultrasound (US) and alpha-fetoprotein (AFP) is recommended for the surveillance of hepatocellular carcinoma (HCC), the utilization of AFP has its challenges, including accuracy dependent on its cut-off levels, degree of liver necroinflammation, and etiology of liver disease. Though various studies have demonstrated the utility of protein induced by vitamin K absence II (PIVKA-II) in surveillance, treatment monitoring, and predicting recurrence, it is still not recommended as a routine biomarker test. A panel of 17 experts from Asia-Pacific, gathered to discuss and reach a consensus on the clinical usefulness and value of PIVKA-II for the surveillance and treatment monitoring of HCC, based on six predetermined statements. The experts agreed that PIVKA-II was valuable in the detection of HCC in AFP-negative patients, and could potentially benefit detection of early HCC in combination with AFP. PIVKA-II is clinically useful for monitoring curative and intra-arterial locoregional treatments, outcomes, and recurrence, and could potentially predict microvascular invasion risk and facilitate patient selection for liver transplant. However, combining PIVKA-II with US and AFP for HCC surveillance, including small HCC, still requires more evidence, whilst its role in detecting AFP-negative HCC will potentially increase as more patients are treated for hepatitis-related HCC. PIVKA-II in combination with AFP and US has a clinical role in the Asia-Pacific region for surveillance. However, implementation of PIVKA-II in the region will have some challenges, such as requiring standardization of cut-off values, its cost-effectiveness and improving awareness among healthcare providers.
2.DPHL:A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery
Zhu TIANSHENG ; Zhu YI ; Xuan YUE ; Gao HUANHUAN ; Cai XUE ; Piersma R. SANDER ; Pham V. THANG ; Schelfhorst TIM ; Haas R.G.D. RICHARD ; Bijnsdorp V. IRENE ; Sun RUI ; Yue LIANG ; Ruan GUAN ; Zhang QIUSHI ; Hu MO ; Zhou YUE ; Winan J. Van Houdt ; Tessa Y.S. Le Large ; Cloos JACQUELINE ; Wojtuszkiewicz ANNA ; Koppers-Lalic DANIJELA ; B(o)ttger FRANZISKA ; Scheepbouwer CHANTAL ; Brakenhoff H. RUUD ; Geert J.L.H. van Leenders ; Ijzermans N.M. JAN ; Martens W.M. JOHN ; Steenbergen D.M. RENSKE ; Grieken C. NICOLE ; Selvarajan SATHIYAMOORTHY ; Mantoo SANGEETA ; Lee S. SZE ; Yeow J.Y. SERENE ; Alkaff M.F. SYED ; Xiang NAN ; Sun YAOTING ; Yi XIAO ; Dai SHAOZHENG ; Liu WEI ; Lu TIAN ; Wu ZHICHENG ; Liang XIAO ; Wang MAN ; Shao YINGKUAN ; Zheng XI ; Xu KAILUN ; Yang QIN ; Meng YIFAN ; Lu CONG ; Zhu JIANG ; Zheng JIN'E ; Wang BO ; Lou SAI ; Dai YIBEI ; Xu CHAO ; Yu CHENHUAN ; Ying HUAZHONG ; Lim K. TONY ; Wu JIANMIN ; Gao XIAOFEI ; Luan ZHONGZHI ; Teng XIAODONG ; Wu PENG ; Huang SHI'ANG ; Tao ZHIHUA ; Iyer G. NARAYANAN ; Zhou SHUIGENG ; Shao WENGUANG ; Lam HENRY ; Ma DING ; Ji JIAFU ; Kon L. OI ; Zheng SHU ; Aebersold RUEDI ; Jimenez R. CONNIE ; Guo TIANNAN
Genomics, Proteomics & Bioinformatics 2020;18(2):104-119
To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipe-line and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to gen-erate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000.