1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Banxia Xiexin Decoction suppresses malignant phenotypes of colon cancer cells via PARG/PARP1/NF-κB signaling pathway.
Yu-Qing HUANG ; Jia-Mei WANG ; Heng-Zhou LAI ; Chong XIAO ; Feng-Ming YOU ; Qi-Xuan KUANG ; Yi-Fang JIANG
China Journal of Chinese Materia Medica 2025;50(2):496-506
This study aims to delve into the influences and underlying mechanisms of Banxia Xiexin Decoction(BXD) on the proliferation, apoptosis, invasion, and migration of colon cancer cells. Firstly, the components of BXD in blood were identified by UPLC-MS/MS, and subsequently the content of these components were determined by HPLC. Then, different concentrations of BXD were used to treat both the normal intestinal epithelial cells(NCM460) and the colon cancer cells(HT29 and HCT116). The cell viability and apoptosis were examined by the cell counting kit-8(CCK-8) and flow cytometry, respectively. Western blot was employed to determine the expression of the apoptosis regulators B-cell lymphoma-2(Bcl-2) and Bcl-2-associated X(Bax). The cell wound healing assay and Transwell assay were employed to measure the cell migration and invasion, respectively. Additionally, Western blot was employed to determine the expression levels of epithelial-mesenchymal transition(EMT)-associated proteins, including epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), and vimentin. The protein and mRNA levels of the factors in the poly(ADP-ribose) glycohydrolase(PARG)/poly(ADP-ribose) polymerase 1(PARP1)/nuclear factor kappa-B p65(NF-κB p65) signaling pathway were determined by Western blot and RT-qPCR, respectively. The results demonstrated that following BXD intervention, the proliferation of HT29 and HCT116 cells was significantly reduced. Furthermore, BXD promoted the apoptosis, enhanced the expression of Bcl-2, and suppressed the expression of Bax in colon cancer cells. At the same time, BXD suppressed the cell migration and invasion and augmented the expression of E-cadherin while diminishing the expression of N-cadherin and vimentin. In addition, BXD down-regulated the protein and mRNA levels of PARG, PARP1, and NF-κB p65. In conclusion, BXD may inhibit the malignant phenotypes of colon cancer cells by mediating the PARG/PARP1/NF-κB signaling pathway.
Colonic Neoplasms/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Phenotype
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Apoptosis
;
Cell Movement/drug effects*
;
Neoplasm Invasiveness
;
HCT116 Cells
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Humans
;
Poly (ADP-Ribose) Polymerase-1
;
Glycoside Hydrolases
;
bcl-2-Associated X Protein
;
NF-kappa B p50 Subunit
5.Banxia Xiexin Decoction reshapes tryptophan metabolism to inhibit progression of colon cancer.
Yi-Fang JIANG ; Yu-Qing HUANG ; Heng-Zhou LAI ; Xue-Ke LI ; Liu-Yi LONG ; Feng-Ming YOU ; Qi-Xuan KUANG
China Journal of Chinese Materia Medica 2025;50(5):1310-1320
This study explores the effect and mechanism of Banxia Xiexin Decoction(BXD) in inhibiting colon cancer progression by reshaping tryptophan metabolism. Balb/c mice were assigned into control, model, low-dose BXD(BXD-L), and high-dose BXD(BXD-H) groups. Except the control group, the other groups were subcutaneously injected with CT26-Luc cells for the modeling of colon cancer, which was followed by the intervention with BXD. Small animal live imaging was employed to monitor tumor growth, and the tumor volume and weight were measured. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in mouse tumors. Immunohistochemistry was used to detect Ki67 expression in tumors. Immunofluorescence and flow cytometry were used to detect the infiltration and number changes of CD3~+/CD8~+ T cells in the tumor tissue. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of interferon-gamma(IFN-γ) and interleukin-2(IL-2) in tumors. Targeted metabolomics was employed to measure the level of tryptophan(Trp) in the serum, and the Trp content in the tumor tissue was measured. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of indoleamine 2,3-dioxygenase 1(IDO1), MYC proto-oncogene, and solute carrier family 7 member 5(SLC7A5) in the tumor tissue. Additionally, a co-culture model with CT26 cells and CD8~+ T cells was established in vitro and treated with the BXD-containing serum. The cell counting kit-8(CCK-8) assay was used to examine the viability of CT26 cells. The content of Trp in CT26 cells and CD8~+ T cells, as well as the secretion of IFN-γ and IL-2 by CD8~+ T cells, was measured. RT-qPCR was used to determine the mRNA levels of MYC and SLC7A5 in CT26 cells. The results showed that BXD significantly inhibited the tumor growth, reduced the tumor weight, and decreased the tumor volume in the model mice. In addition, the model mice showed sparse arrangement of tumor cells, varying degrees of patchy necrosis, and downregulated expression of Ki67 in the tumor tissue. BXD elevated the levels of IFN-γ and IL-2 in the tumor tissue, while upregulating the ratio of CD3~+/CD8~+ T cells and lowering the levels of Trp, IDO1, MYC, and SLC7A5. The co-culture experiment showed that BXD-containing serum reduced Trp uptake by CT26 cells, increased Trp content in CD8~+T cells, enhanced IL-2 and IFN-γ secretion of CD8~+T cells, and down-regulated the mRNA levels of MYC and SLC7A5 in CT26 cells. In summary, BXD can inhibit the MYC/SLC7A5 pathway to reshape Trp metabolism and adjust Trp uptake by CD8~+ T cells to enhance the cytotoxicity, thereby inhibiting the development of colon cancer.
Animals
;
Tryptophan/metabolism*
;
Colonic Neoplasms/pathology*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred BALB C
;
Humans
;
Cell Line, Tumor
;
Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism*
;
Female
;
Disease Progression
;
Cell Proliferation/drug effects*
;
Proto-Oncogene Mas
;
Male
6.Inhibition of KLK8 promotes pulmonary endothelial repair by restoring the VE-cadherin/Akt/FOXM1 pathway.
Ying ZHAO ; Hui JI ; Feng HAN ; Qing-Feng XU ; Hui ZHANG ; Di LIU ; Juan WEI ; Dan-Hong XU ; Lai JIANG ; Jian-Kui DU ; Ping-Bo XU ; Yu-Jian LIU ; Xiao-Yan ZHU
Journal of Pharmaceutical Analysis 2025;15(4):101153-101153
Image 1.
7.Clinical Study on Yiqi Huatan Tongluo Prescription Combined with Drug-Coated Balloon in the Treatment of Coronary Heart Disease of Qi Deficiency and Phlegm Stasis Obstructing Collateral Type
Mei-Chun HUANG ; Yu-Peng LIANG ; Pei-Zhong LIU ; Sheng-Yun ZHANG ; Se PENG ; Chuang-Peng LI ; He-Zhen ZHANG ; Tian-Wei LAI ; Chang-Jiang AI ; Qing LIU ; Ai-Meng ZHANG ; Shao-Hui LI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2656-2662
Objective To investigate the clinical efficacy and safety of Yiqi Huatan Tongluo Prescription(mainly composed of Fici Simplicissimae Radix,Notoginseng Radix et Rhizoma,Pinelliae Rhizoma Praeparatum,Poria,Nelumbinis Folium,and Glycyrrhizae Radix et Rhizoma,etc.)combined with drug-coated balloon(DCB)in the treatment of coronary heart disease(CHD)and to observe its effect on low-shear related serological indicators.Methods A total of 106 patients with CHD of qi deficiency and phlegm stasis obstructing collateral type who were scheduled to undergo percutaneous coronary intervention were randomly divided into a treatment group and a control group,with 53 cases in each group.The control group was treated with drug-eluting stent implantation,and the treatment group was treated with DCB.After the operation,the control group was given conventional antiplatelet aggregation drugs,and the treatment group was given oral administration of Yiqi Huatan Tongluo Prescription.The medication for the two groups lasted for 12 weeks.The changes in the serum levels of monocyte chemoattractant protein 1(MCP-1),interleukin 1 β(IL-1β)and vascular endothelial growth factor(VEGF)in the two groups were observed before and after treatment.Moreover,the traditional Chinese medicine(TCM)syndrome efficacy after treatment and the incidence of adverse events one year after operation were compared between the two groups.Results(1)After 12 weeks of treatment,the total effective rate for TCM syndrome efficacy of the treatment group was 88.68%(47/53),and that of the control group was 75.47%(40/53).The intergroup comparison(tested by chi-square test)showed that the TCM syndrome efficacy in the treatment group was significantly superior to that in the control group(P<0.05).(2)The analysis of indicators related to endothelial dysfunction in the blood flow with low shear stress showed that after treatment,the levels of serum MCP-1,IL-1βand VEGF in the control group presented no obvious changes(P>0.05),but the serum levels of MCP-1 and IL-1β in the treatment group were significantly lowered compared with those before treatment(P<0.05).The intergroup comparison showed that the decrease of serum MCP-1,IL-1β and VEGF levels in the treatment group was significantly superior to that in the control group(P<0.05).(3)The one-year follow-up after the operation showed that the total incidence of adverse events in the treatment group was 18.87%(10/53),and that in the control group was 20.75%(11/53).There was no significant difference between the two groups(P>0.05).Conclusion Yiqi Huatan Tongluo Prescription combined with DCB has definite action on the targets related to endothelial dysfunction in coronary blood flow with low shear stress,which is conducive to reducing inflammatory response,improving the symptoms of angina pectoris and enhancing clinical efficacy.The incidence of adverse events did not increase one year after operation,indicating good safety and effectiveness.
8. The neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/reperfusion in rats
Hui-Ling WU ; Qing-Qing WU ; Jing-Quan CHEN ; Bin-Bin ZHOU ; Zheng-Shuang YU ; Ze-Lin YANG ; Wen-Fang LAI ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(1):70-75
Aim To study the neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/ reperfusion rats and its mechanism. Methods Sixty SD rats were randomly divided into model group, low, middle and high dose groups of Herba siegesbeckiae, and Sham operation group, and the drug was given continuously for seven days. The degree of neurologic impairment was evaluated by mNSS, and the infarct volume was measured by MRI. The number of Nissl-posi- tive cells was detected by Nissl staining, and the apop- tosis was accessed by Tunel staining. Furthermore, the expression of Bax, Bcl-2 and NeuN was observed by Western blot, and the expression of NeuN was detected by immunofluorescence staining. The expression of IL- 1β, TNF-α and IL-6 mRNA was performed by RT- qPCR. Results The mNSS score and the volume of ischemic cerebral infarction in the model group were significantly increased, and Herba siegesbeckiae extract treatment significantly decreased the mNSS score and infarct volume (P<0.05, P<0.01). Herba siegesbeckiae extract could increase the number of Nissl-pos- itive cells and the expression of NeuN (P<0.01), and reduce the number of Tunel-positive cells (P<0.01). Western blot showed that Herba siegesbeckiae extract inhibited the expression of Bax, increased Bcl-2 and NeuN in ischemic brain tissue (P<0.01). RT-qPCR showed that Herba siegesbeckiae extract inhibited the expression of IL-1 β, TNF-α and IL-6 mRNA in the is-chemic brain tissue (P<0.01). Conclusions Herba siegesbeckiae extract can reduce the cerebral infarction volume, improve the neurological function damage, inhibit the apoptosis of nerve cells and the expression of inflammatory factors and promote the expression of NeuN, there by exerting protective effects on MCAO rats.
9.Effect of salidroside on ischemic brain injury in rats
Qing-Qing WU ; Hui-Lin WU ; Bin-Bin ZHOU ; Zheng-Shuang YU ; Ze-Lin YANG ; Wen-Fang LAI ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(5):873-880
Aim To study the permeability of salidro-side(Sal)to the blood brain barrier(BBB)by high-performance liquid chromatography electrospray ioniza-tion tandem mass spectrometry(UPLC-ESI-MS-MS),and to explore the target and mechanism of Sal in the treatment of ischemic stroke(IS)by network pharma-cology,molecular docking technique and animal exper-iment.Methods UPLC-ESI-MS/MS was used to study the BBB penetration of Sal.Multiple databases were used to predict the target of Sal and the disease target of IS,GO and KEGG enrichment analysis were performed and verified by molecular docking technique and animal experiments.Results After Sal adminis-tration to normal rats and MCAO rats,Sal prototype and the metabolite tyrosol were detected in plasma and brain tissue of rats.A total of 191 targets were identi-fied by network pharmacology,the enrichment analysis of GO mainly involved in the biological processes of proteolysis and positive regulation of cell migration,and the analysis of KEGG pathway suggested that PI3K-Akt,MAPK,FOXO and other signaling path-ways played a key role in the treatment of IS by Sal The results of molecular docking showed that Sal had good binding ability with the core target of docking,and the results of animal experiments showed that Sal could significantly improve the neurologic impairment of MCAO rats,the number of Nissl-positive cells in is-chemic side significantly increased,and the expression of VEGF,EGFR and IGF1 increased,while the ex-pression of IL-6 and MMP9 was inhibited.Conclu-sions Sal is able to penetrate the BBB and enter the central nervous system for its pharmacological effects.Network pharmacology predicts the core targets of Sal in the treatment of IS,including VEGFA,EGFR,IL-6,MMP9,IGF1,CASP3,ALB,SRC.The effects of Sal on some core targets can be verified by animal ex-periments,to provide a reference for further study of the mechanism of Sal in the treatment of IS.
10.The inhibitory effect of artesunate on hepatocellular carcinoma cells by regulating expression of GADD45A and NACC1
Guan-Tong SHEN ; Jin-Yao DONG ; Jing FENG ; Nan QIN ; Gen-Lai DU ; Fei ZHU ; Ke LIAN ; Xin-Yu LIU ; Qing-Liang LI ; Xun-Wei ZHANG ; Ru-Yi SHI
Chinese Pharmacological Bulletin 2024;40(6):1089-1097
Aim To explore the effect and mechanism of the artesunate(ART)on hepatocellular carcinoma(HCC).Methods The cell lines MHCC-97H and HCC-LM3 were used to be detected.MTT and clone formation were used to determine the cell proliferation;Wound healing was used to detect the cell migration;Transwell was used to test the cell invasion.Flow-cy-tometry was used to detect cell apoptosis and cell cy-cle.RNA-seq and qRT-PCR was used to detect the genes expression.Results The proliferation,migra-tion and invasion of treated cells were obviously inhibi-ted(P<0.01).Moreover,the apoptosis rate in-creased significantly,so did the proportion of G2/M cells.Transcriptomic analysis identified GADD45A as a potential target of ART through RNA-sequencing da-ta,and suggested that ART might induce apoptosis and cell cycle arrest through regulating the expression of GADD45A.In addition,the results of mechanism studies and signaling analysis suggested that GADD45A had interaction with its upstream gene NACC1(nucle-us accumbens associated 1).Moreover,after ART treatment,the expressions of GADD45A and NACC1 were changed significantly.Conclusion ART may be a potential drug to resist HCC by affecting the expres-sion of GADD45A and its upstream gene NACC1,which provides a new drug,a new direction and a new method for the clinical treatment of HCC.

Result Analysis
Print
Save
E-mail