1.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
2.LIM and calponin homology domains 1 may function as promising biological markers to aid in the prognostic prediction of oral squamous cell carcinoma.
Li XU ; Wen SHI ; Yuehua LI ; Yajun SHEN ; Shang XIE ; Xiaofeng SHAN ; Zhigang CAI
Journal of Peking University(Health Sciences) 2025;57(1):19-25
OBJECTIVE:
To explore the function of LIM and calponin homology domains 1 (LIMCH1) in the development and progression of oral squamous cell carcinoma (OSCC), along with their potential clinical applications.
METHODS:
By utilizing transcriptome sequencing data from two groups of oral squamous cell carcinoma patients, along with bioinformatics analytical techniques such as Gene Ontology (GO) and gene co-expression networks, we identified genes that might play a pivotal role in the pathogenesis of oral squamous cell carcinoma. We employed real-time quantitative PCR and Western blotting to validate the expression patterns of these genes across twelve patient tissue samples. Furthermore, we conducted CCK-8 assays, flow cytometry analyses, and scratch wound healing assays to assess the impact of key genes on the biological behaviors of both the Cal27 oral squamous cell carcinoma cell line and the potentially malignant DOK oral lesion cell line. Additionally, we examined correlations between these key genes and clinical disease parameters in 214 oral squamous cell carcinoma patients using The Cancer Genome Atlas (TCGA) data; gene set enrichment analysis (GSEA) analysis results were also incorporated to enhance our findings from real-time quantitative PCR and Western blotting regarding potential mechanisms underlying the action of these key genes.
RESULTS:
The integrated analysis of sequencing data and bioinformatics revealed that LIMCH1 exhibited significantly reduced mRNA (P < 0.001) and protein levels (P < 0.01) in the oral squamous cell carcinoma tissues compared with normal control tissues. In the Cal27 cells, the low LIMCH1 level group demonstrated a larger wound healing area within 24 hours than the control group (P < 0.01), enhanced proliferation capacity over 72 hours relative to the control group (P < 0.01), and an increased apoptosis rate within 24 hours compared with the high expression group (P < 0.05). However, no significant differences were observed between the low and high level groups in DOK cells. Furthermore, it was determined that low LIMCH1 level correlated with poor prognosis in the patients (P=0.013) and a higher lymph node metastasis rate (P < 0.05). Investigations into the potential mechanisms of action indicated that LIMCH1 did not influence the onset or progression of oral squamous cell carcinoma via the epithelial-mesenchymal transition pathway.
CONCLUSION
LIMCH1 level may function as a promising biomarker to aid in the prognostic assessment of oral squamous cell carcinoma; however, its precise mechanistic role requires further investigation.
Humans
;
Mouth Neoplasms/metabolism*
;
Prognosis
;
Carcinoma, Squamous Cell/metabolism*
;
Biomarkers, Tumor/metabolism*
;
LIM Domain Proteins/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Male
;
Female
3.Villin-like protein VILL suppresses proliferation of nasopharyngeal carcinoma cells by interacting with LMO7 protein.
Yumei ZENG ; Jike LI ; Zhongxi HUANG ; Yibo ZHOU
Journal of Southern Medical University 2025;45(5):954-961
OBJECTIVES:
To elucidate the molecular mechanism by which villin-like protein VILL (VILL) inhibits proliferation of nasopharyngeal carcinoma (NPC) cells.
METHODS:
Co-immunoprecipitation (CO-IP) assay, mass spectrometry, Western blotting, immunofluorescence staining, and GST pull-down assay were employed to identify and confirm the protein interacting with VILL that had the highest abundance in NPC cell lines. Transgenic experiments were conducted in both NPC cell lines and nude mice to validate the regulatory role of VILL and its target protein in NPC proliferation. Immunohistochemistry was utilized to assess the correlation of the expression levels of VILL and its target protein in clinical tissue specimens of NPC with the clinical features of the patients.
RESULTS:
In NPC cell lines (HONE1 EBV and S18), VILL was found to interact most abundantly with the E3 ubiquitin ligase LMO7, and both proteins co-localized in the cytoplasm with direct interactions. Overexpression of LMO7 partially counteracted the inhibitory effect of VILL on NPC cell proliferation. The expression of VILL was significantly downregulated in 136 NPC tissue samples compared to 67 non-cancerous nasopharyngeal tissues (P<0.00001) with close correlation with clinical T stage (P=0.04), N stage (P=0.01), and M stage (P=0.013), whereas LMO7 was highly expressed in all the NPC tissues.
CONCLUSIONS
VILL overexpression inhibits NPC proliferation probably by suppressing the oncogenic function of LMO7.
Nasopharyngeal Neoplasms/metabolism*
;
Humans
;
LIM Domain Proteins/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Animals
;
Mice
;
Nasopharyngeal Carcinoma
;
Mice, Nude
;
Transcription Factors/metabolism*
;
Carcinoma
;
Female
;
Microfilament Proteins/genetics*
;
Male
;
Middle Aged
4.Carcinoma-associated fibroblast-derived lysyl oxidase-rich extracellular vesicles mediate collagen crosslinking and promote epithelial-mesenchymal transition via p-FAK/p-paxillin/YAP signaling.
Xue LIU ; Jiao LI ; Xuesong YANG ; Xiaojie LI ; Jing KONG ; Dongyuan QI ; Fuyin ZHANG ; Bo SUN ; Yuehua LIU ; Tingjiao LIU
International Journal of Oral Science 2023;15(1):32-32
Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2β1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.
Humans
;
Paxillin/metabolism*
;
Protein-Lysine 6-Oxidase/metabolism*
;
Carcinoma, Squamous Cell/pathology*
;
Epithelial-Mesenchymal Transition
;
Integrin alpha2beta1/metabolism*
;
Mouth Neoplasms/pathology*
;
Collagen/metabolism*
;
Fibroblasts
;
Extracellular Vesicles/metabolism*
;
Cell Line, Tumor
;
Tumor Microenvironment
5.A case of dilated cardiomyopathy caused by FHL2 gene variant and a literature review.
Chunrui YU ; Lijuan JIA ; Chanjuan HAO ; Bianjing ZUO ; Wei LI ; Fangjie WANG ; Jun GUO
Chinese Journal of Medical Genetics 2023;40(3):337-343
OBJECTIVE:
To explore the clinical phenotype and genetic features of a child with dilated cardiomyopathy (DCM).
METHODS:
Clinical data of the child who had presented at the Zhengzhou Children's Hospital on April 28, 2020 was collected. Trio-whole exome sequencing (trio-WES) was carried out for the child and her parents, and candidate variants were validated by Sanger sequencing. "FHL2" was taken as the key word to retrieve related literature from January 1, 1997 to October 31, 2021 in the PubMed database and was also searched in the ClinVar database as a supplement to analyze the correlation between genetic variants and clinical features.
RESULTS:
The patient was a 5-month-old female infant presented with left ventricular enlargement and reduced systolic function. A heterozygous missense variant c.391C>T (p.Arg131Cys) in FHL2 gene was identified through trio-WES. The same variant was not detected in either of her parents. A total of 10 patients with FHL2 gene variants have been reported in the literature, 6 of them had presented with DCM, 2 with hypertrophic cardiomyopathy (HCM), and 2 with sudden unexplained death (SUD). Phenotypic analysis revealed that patients with variants in the LIM 3 domain presented hypertrophic cardiomyopathy and those with variants of the LIM 0~2 and LIM 4 domains had mainly presented DCM. The c.391C>T (p.Arg131Cys) has been identified in a child with DCM, though it has not been validated among the patient's family members. Based on the guidelines of the American College of Medical Genetics and Genomics, the c.391C>T(p.Arg131Cys) variant was re-classified as likely pathogenic (PS2+PM2_Supporting+PP3+PP5).
CONCLUSION
The heterozygous missense variant of c.391C>T (p.Arg131Cys) in the FHL2 gene probably predisposed to the DCM in this child, which has highlighted the importance of WES in the clinical diagnosis and genetic counseling.
Female
;
Humans
;
Cardiomyopathy, Dilated/genetics*
;
Cardiomyopathy, Hypertrophic
;
Genetic Counseling
;
Genomics
;
Heterozygote
;
Muscle Proteins/genetics*
;
Transcription Factors
;
LIM-Homeodomain Proteins/genetics*
6.LIM domain only 1: an oncogenic transcription cofactor contributing to the tumorigenesis of multiple cancer types.
Guo-Fa ZHAO ; Li-Qin DU ; Lei ZHANG ; You-Chao JIA
Chinese Medical Journal 2021;134(9):1017-1030
The LIM domain only 1 (LMO1) gene belongs to the LMO family of genes that encodes a group of transcriptional cofactors. This group of transcriptional cofactors regulates gene transcription by acting as a key "connector" or "scaffold" in transcription complexes. All LMOs, including LMO1, are important players in the process of tumorigenesis. Unique biological features of LMO1 distinct from other LMO members, such as its tissue-specific expression patterns, interacting proteins, and transcriptional targets, have been increasingly recognized. Studies indicated that LMO1 plays a critical oncogenic role in various types of cancers, including T-cell acute lymphoblastic leukemia, neuroblastoma, gastric cancer, lung cancer, and prostate cancer. The molecular mechanisms underlying such functions of LMO1 have also been investigated, but they are currently far from being fully elucidated. Here, we focus on reviewing the current findings on the role of LMO1 in tumorigenesis, the mechanisms of its oncogenic action, and the mechanisms that drive its aberrant activation in cancers. We also briefly review its roles in the development process and non-cancer diseases. Finally, we discuss the remaining questions and future investigations required for promoting the translation of laboratory findings to clinical applications, including cancer diagnosis and treatment.
Carcinogenesis/genetics*
;
DNA-Binding Proteins/genetics*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
LIM Domain Proteins/genetics*
;
Male
;
Transcription Factors/metabolism*
7.Effect of the regulator of G-protein signaling 2 on the proliferation and invasion of oral squamous cell carcinoma cells and its molecular mechanism.
Cheng-Zhong LIN ; Zhe-Qi LIU ; Wen-Kai ZHOU ; Tong JI ; Wei CAO
West China Journal of Stomatology 2021;39(3):320-327
OBJECTIVES:
This study aims to investigate the effect of the regulator of G-protein signaling 2 (RGS2) on the proliferation and invasion of oral squamous cell carcinoma (OSCC) cells and its potential molecular mechanism. Metho⁃ds The expression status and clinical significance of RGS2 in head and neck squamous cell carcinomas and matched adjacent normal tissues were evaluated using TCGA database. Three OSCC cell lines (i.e., SCC-9, Cal27, and Fadu) were overexpressed with RGS2, and the effect of RGS2 on cell proliferation and invasion was determined using the Transwell, clone formation, and cell counting kit (CCK)-8 assays. Moreover, the yeast two-hybrid scree-ning and co-immunoprecipitation (Co-IP) assays were conducted to detect the correlation of RGS2, four and a half LIM domains protein 1 (FHL1), and damage DNA-binding protein 1 (DDB1).
RESULTS:
The expression level of RGS2 in OSCC was significantly lower than that in matched adjacent normal tissues (
CONCLUSIONS
RGS2 plays an important role in the inhibition of OSCC proliferation and invasion. The structure stability of RGS2 is competitively regulated by FHL1 and DDB1.
Carcinoma, Squamous Cell
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
GTP-Binding Proteins
;
Head and Neck Neoplasms
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
LIM Domain Proteins
;
Mouth Neoplasms
;
Muscle Proteins
;
Squamous Cell Carcinoma of Head and Neck
8.The Role of Zyxin in Regulating Platelet Cytoskeleton Distribution.
Bin CHENG ; Rong YAN ; Su-Qin ZHANG ; Meng-Nan YANG ; Ke-Sheng DAI
Journal of Experimental Hematology 2021;29(3):876-880
OBJECTIVE:
To investigate the regulatory effect of zyxin on the distribution of platelet cytoskeleton.
METHODS:
Platelets were isolated from zyxin-knockout (Zyx
RESULTS:
After zyxin gene was knockout, the expressions of cytoskeleton proteins β-actin, α-actinin, filamin A, and myosin Ⅱ A in resting and Jas-induced platelets were significantly increased. In the platelet spreading on fibrinogen surface, F-actin was increased in Zyx
CONCLUSION
Zyxin significantly regulates the distribution of platelet cytoskeleton, which plays an important role in maintaining platelet cytoskeleton homeostasis.
Actinin
;
Actins
;
Animals
;
Blood Platelets
;
Cytoskeleton
;
Mice
;
Zyxin
9.The effects of single versus combined therapy using LIM-kinase 2 inhibitor and type 5 phosphodiesterase inhibitor on erectile function in a rat model of cavernous nerve injury-induced erectile dysfunction.
Min Chul CHO ; Junghoon LEE ; Juhyun PARK ; Sohee OH ; Ji Sun CHAI ; Hwancheol SON ; Jae-Seung PAICK ; Soo Woong KIM
Asian Journal of Andrology 2019;21(5):493-500
We aimed to determine whether combination of LIM-kinase 2 inhibitor (LIMK2i) and phosphodiesterase type-5 inhibitor (PDE5i) could restore erectile function through suppressing cavernous fibrosis and improving cavernous apoptosis in a rat model of cavernous nerve crush injury (CNCI). Seventy 12-week-old Sprague-Dawley rats were equally distributed into five groups as follows: (1) sham surgery (Group S), (2) CNCI (Group I), (3) CNCI treated with daily intraperitoneal administration of 10.0 mg kg-1 LIMK2i (Group I + L), (4) daily oral administration of 20.0 mg kg-1 udenafil, PDE5i (Group I + U), and (5) combined administration of 10.0 mg kg-1 LIMK2i and 20.0 mg kg-1 udenafil (Group I + L + U). Rats in Groups I + L, I + U, and I + L + U were treated with respective regimens for 2 weeks after CNCI. At 2 weeks after surgery, erectile response was assessed using electrostimulation. Penile tissues were processed for histological studies and western blot. Group I showed lower intracavernous pressure (ICP)/mean arterial pressure (MAP), lower area under the curve (AUC)/MAP, decreased immunohistochemical staining for alpha-smooth muscle (SM) actin, higher apoptotic index, lower SM/collagen ratio, increased phospho-LIMK2-positive fibroblasts, decreased protein kinase B/endothelial nitric oxide synthase (Akt/eNOS) phosphorylation, increased LIMK2/cofilin phosphorylation, and increased protein expression of fibronectin, compared to Group S. In all three treatment groups, erectile responses, protein expression of fibronectin, and SM/collagen ratio were improved. Group I + L + U showed greater improvement in erectile response than Group I + L. SM content and apoptotic index in Groups I + U and I + L + U were improved compared to those in Group I. However, Group I + L did not show a significant improvement in SM content or apoptotic index. The number of phospho-LIMK2-positive fibroblasts was normalized in Groups I + L and I + L + U, but not in Group I + U. Akt/eNOS phosphorylation was improved in Groups I + U and I + L + U, but not in Group I + L. LIMK2/cofilin phosphorylation was improved in Groups I + L and I + L + U, but not in Group I + U. Our data indicate that combined treatment of LIMK2i and PDE5i immediate after CN injury could improve erectile function by improving cavernous apoptosis or eNOS phosphorylation and suppressing cavernous fibrosis. Rectification of Akt/eNOS and LIMK2/cofilin pathways appears to be involved in their improvement.
Animals
;
Apoptosis/drug effects*
;
Arterial Pressure
;
Electric Stimulation
;
Erectile Dysfunction/pathology*
;
Lim Kinases/antagonists & inhibitors*
;
Male
;
Nerve Crush
;
Nitric Oxide Synthase Type III/metabolism*
;
Penis/pathology*
;
Peripheral Nerve Injuries/pathology*
;
Phosphodiesterase 5 Inhibitors/therapeutic use*
;
Phosphorylation
;
Pyrimidines/therapeutic use*
;
Rats
;
Rats, Sprague-Dawley
;
Sulfonamides/therapeutic use*
10.Impact of LDB3 gene polymorphisms on clinical presentation and implantable cardioverter defibrillator (ICD) implantation in Chinese patients with idiopathic dilated cardiomyopathy.
Dong-Fei WANG ; Jia-Lan LYU ; Juan FANG ; Jian CHEN ; Wan-Wan CHEN ; Jia-Qi HUANG ; Shu-Dong XIA ; Jian-Mei JIN ; Fang-Hong DONG ; Hong-Qiang CHENG ; Ying-Ke XU ; Xiao-Gang GUO
Journal of Zhejiang University. Science. B 2019;20(9):766-775
OBJECTIVE:
Mutations in LIM domain binding 3 (LDB3) gene cause idiopathic dilated cardiomyopathy (IDCM), a structural heart disease with a complicated genetic background. However, the association of polymorphisms in the LDB3 gene with susceptibility to IDCM in Chinese populations remains unexplored as dose the impact on clinical presentation.
METHODS:
We sequenced all exons and the adjacent part of introns of the LDB3 gene in 159 Chinese Han IDCM patients and 247 healthy controls. Then we detected the distribution of polymorphisms in the LDB3 gene in all participants and assessed their associations with risk of IDCM. Additionally, we conducted a stratified genotype-phenotype correlation analysis.
RESULTS:
The A allele of rs4468255 was significantly associated with IDCM (P<0.01). The rs4468255, rs11812601, rs56165849, and rs3740346 were also associated with diastolic blood pressure (DBP) and left ventricular ejection fraction (LVEF) (P<0.05). Notably, a higher frequency of rs4468255 polymorphism was observed in implantable cardioverter defibrillator (ICD) recipients under a recessive model (P<0.01), whereas the significant association disappeared after adjusting for potential confounders. However, in the dominant model, notable correlations could only be observed after adjusting for multi parameters.
CONCLUSIONS
The rs4468255 was significantly correlated with IDCM of Chinese Han population. A allele of rs4468255 is higher in IDCM patients with ICD implantation, suggesting the influence of genetic background in the generation of this response. In addition, rs11812601, rs56165849, and rs3740346 in LDB3 show association with brain natriuretic peptide, DBP, and LVEF levels in patients with IDCM but did not show any association with IDCM susceptibility.
Adaptor Proteins, Signal Transducing/genetics*
;
Adult
;
Aged
;
Alleles
;
Asian People
;
Cardiomyopathy, Dilated/surgery*
;
China/epidemiology*
;
Defibrillators, Implantable
;
Exons
;
Female
;
Genetic Association Studies
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
LIM Domain Proteins/genetics*
;
Linkage Disequilibrium
;
Male
;
Middle Aged
;
Mutation
;
Polymorphism, Genetic
;
Sequence Analysis, DNA

Result Analysis
Print
Save
E-mail