3.Spatial distribution characteristics of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020.
Y ZHOU ; L TANG ; Y TONG ; J HUANG ; J WANG ; Y ZHANG ; H JIANG ; N XU ; Y GONG ; J YIN ; Q JIANG ; J ZHOU ; Y ZHOU
Chinese Journal of Schistosomiasis Control 2023;35(5):444-450
OBJECTIVE:
To investigate the spatial distribution characteristics of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody, and to examine the correlation between the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020, so as to provide insights into advanced schistosomiais control in the province.
METHODS:
The epidemiological data of schistosomiasis in Hunan Province in 2020 were collected, including number of permanent residents in survey villages, number of advanced schistosomiasis patients, number of residents receiving serological tests and number of residents seropositive for anti-Schistosoma antibody, and the prevalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody were descriptively analyzed. Village-based spatial distribution characteristics of prevalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody were identified in Hunan Province in 2020, and the correlation between the revalence advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody was examined using Spearman correlation analysis.
RESULTS:
The prevalence of advanced schistosomiasis was 0 to 2.72% and the seroprevalence of anti-Schistosoma antibody was 0 to 20.25% in 1 153 schistosomiasis-endemic villages in Hunan Province in 2020. Spatial clusters were identified in both the prevalence of advanced schistosomiasis (global Moran's I = 0.416, P < 0.01) and the seroprevalence of anti-Schistosoma antibody (global Moran's I = 0.711, P < 0.01) in Hunan Province. Local spatial autocorrelation analysis identified 98 schistosomiasis-endemic villages with high-high clusters of the prevalence of advanced schistosomiasis, 134 endemic villages with high-high clusters of the seroprevalence of anti-Schistosoma antibody and 36 endemic villages with high-high clusters of both the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province. In addition, spearman correlation analysis showed a positive correlation between the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody (rs = 0.235, P < 0.05).
CONCLUSIONS
There were spatial clusters of the prevalence of advanced schistosomiasis and seroprevalence of anti-Schistosoma antibody in Hunan Province in 2020, which were predominantly located in areas neighboring the Dongting Lake. These clusters should be given a high priority in the schistosomiasis control programs.
Animals
;
Humans
;
Prevalence
;
Seroepidemiologic Studies
;
Schistosomiasis/epidemiology*
;
Schistosoma
;
Spatial Analysis
;
Antibodies, Helminth
;
China/epidemiology*
4.Preliminary application of recombinase -aided amplification in detection of Clonorchis sinensis metacercariae in freshwater fish.
J CHEN ; Z WANG ; W HUANG ; J WANG ; L CHEN ; Y SUN ; L ZHAO ; Y ZHAO ; Y QIAN ; J DUAN ; Q ZHANG
Chinese Journal of Schistosomiasis Control 2023;35(5):458-463
OBJECTIVE:
To evaluate the performance of recombinase-aided amplification (RAA) assay in detection of Clonorchis sinensis metacercariae in freshwater fish samples, so as to provide insights into standardization and field application of this assay.
METHODS:
Wild freshwater fish samples were collected in the rivers of administrative villages where C. sinensis-infected residents lived in Jiangyan District, Xinghua County and Taixing County of Taizhou City, Jiangsu Province from June to September 2022. Genomic DNA was extracted from six freshwater fish specimens (5 g each) containing 0, 1, 2, 4, 8 and 16 C. sinensis metacercariae for fluorescent RAA assay, and the diagnostic sensitivity was evaluated. Fluorescent RAA assay was performed with genomic DNA from C. sinensis, Metorchis orientalis, Haplorchis pumilio and Centrocestus formosanus metacercariae as templates to evaluate its cross-reactions. In addition, the detection of fluorescent RAA assay and direct compression method for C. sinensis metacercariae was compared in field-collected freshwater fish samples.
RESULTS:
Positive amplification was found in fresh-water fish specimens containing different numbers of C. sinensis metacercariae, and fluorescent RAA assay was effective to detect one C. sinensis metacercaria in 5 g freshwater fish specimens within 20 min. Fluorescent RAA assay tested negative for DNA from M. orientalis, H. pumilio and C. formosanus metacercariae. Fluorescent RAA assay and direct compression method showed 5.36% (93/1 735) and 2.88% (50/1 735) detection rates for C. sinensis metacercariae in 1 735 field-collected freshwater fish samples, with a statistically significant difference seen (χ2 = 478.150, P < 0.001). There was a significant difference in the detection of C. sinensis metacercariae in different species of freshwater fish by both the direct compression method (χ2 = 11.20, P < 0.05) and fluorescent RAA assay (χ2 = 20.26, P < 0.001), and the detection of C. sinensis metacercariae was higher in Pseudorasbora parva than in other fish species by both the direct compression method and fluorescent RAA assay (both P values < 0.05).
CONCLUSIONS
Fluorescent RAA assay has a high sensitivity for detection of C. sinensis metacercariae in freshwater fish samples, and has no cross-reactions with M. orientalis, H. pumilio or C. formosanus metacercariae. Fluorescent RAA assay shows a higher accuracy for detection of C. sinensis infections in field-collected freshwater fish than the direct compression method.
Animals
;
Clonorchis sinensis/genetics*
;
Metacercariae/genetics*
;
Recombinases
;
Fresh Water
;
Fishes
;
DNA
;
Fish Diseases/diagnosis*
5.Sequence analysis of Paragonimus internal transcribed spacer 2 and cyclooxygenase 1 genes in freshwater crabs in Henan Province.
W CHEN ; T JIANG ; Y DENG ; Y ZHANG ; L AI ; P JI ; D WANG
Chinese Journal of Schistosomiasis Control 2023;35(5):501-507
OBJECTIVE:
To investigate the sequences of internal transcribed spacer 2 (ITS2) and cyclooxygenase 1 (COX1) genes of Paragonimus metacercariae in freshwater crabs in Henan Province, identify the species of Paragonimus and evaluate its genetic relationships with Paragonimus isolates from other provinces in China.
METHODS:
Freshwater crabs were collected from 8 survey sites in Zhengzhou, Luoyang, Pingdingshan, Nanyang and Jiyuan cities of Henan Province from 2016 to 2021, and Paragonimus metacercariae were detected in freshwater crabs. Genomic DNA was extracted from Paragonimus metacercariae, and the ITS2 and COX1 genes were amplified using PCR assay, followed by sequencing of PCR amplification products. The gene sequences were spliced and aligned using the software DNASTAR, and aligned with the sequences of Paragonimus genes in the GenBank. Phylogenetic trees were created using the MEGA6 software with the Neighbor-Joining method based on ITS2 and COX1 gene sequences, with Fasciola hepatica as the outgroup.
RESULTS:
The detection rates of Paragonimus metacercariae were 6.83% (11/161), 50.82% (31/61), 18.52% (5/26), 8.76% (12/137), 14.29% (9/63), 17.76% (19/105), 18.50% (32/173) and 42.71% (41/96) in freshwater crabs from 8 survey sites in Zhengzhou, Luoyang, Pingdingshan, Nanyang and Jiyuan cities of Henan Province, with a mean detection rate of 19.46% (160/822), and a mean infection intensity of 0.57 metacercariae/g. The amplified ITS2 and COX1 gene fragments of Paragonimus were approximately 500 bp and 450 bp in lengths, respectively. The ITS2 gene sequences of Paragonimus metacercariae from 8 survey sites of Henan Province showed the highest homology (99.8% to 100.0%) with the gene sequence of P. skrjabini (GenBank accession number: MW960209.1), and phylogenetic analysis showed that the Paragonimus in this study was clustered into the same clade with P. skrjabini from Sichuan Province (GenBank accession number: AY618747.1), Guangxi Zhuang Autonomous Region (GenBank accession number: AY618729.1) and Hubei Province (GenBank accession number: AY618751.1), and P. miyazaki from Fujian Province (GenBank accession number: AY618741.1) and Japan (GenBank accession number: AB713405.1). The COX1 gene sequences of Paragonimus metacercariae from 8 survey sites of Henan Province showed the highest homology (90.0% to 100.0%) with the gene sequence of P. skrjabini (GenBank accession number: AY618798.1), and phylogenetic analysis showed that the Paragonimus in this study was clustered into the same clade with all P. skrjabini and clustered into the same sub-clade with P. skrjabini from Hubei Province (GenBank accession numbers: AY618782.1 and AY618764.1).
CONCLUSIONS
Paragonimus species from freshwater crabs in Henan Province were all characterized as P. skrjabini, and the ITS2 and COX1 gene sequences had the highest homology to those of P. skrjabini from Hubei Province. The results provide insights into study of Paragonimus in Henan Province and China.
Animals
;
Paragonimus/genetics*
;
Brachyura/genetics*
;
Cyclooxygenase 1/genetics*
;
Phylogeny
;
China/epidemiology*
;
Sequence Analysis, DNA
;
Paragonimiasis
6.Opportunities and challenges in the clinical application of proteomics
P. Putuma GQAMANA ; L. Brandy YOUNG ; Y. Victoria ZHANG
Chinese Journal of Laboratory Medicine 2023;46(8):775-779
As a supplement to immunoassay, mass spectrometry plays an important role in clinical laboratory. With the application and development of mass spectrometry technology in proteomics research, clinical laboratory gradually expanded the analyses of small molecules to proteins/peptides, such as thyroglobulin, insulin-like growth factor-Ⅰ, apolipoprotein E and amyloid protein, etc. However, it faces challenges such as long time and high cost of pretreatment optimization, lack of reference materials and imperfect supervision. Although emerging proteomic biomarkers have been slow to translate into clinical diagnosis, the large proteomic database provides a favorable support for future development.
7.Values of ATX in predicting disease progression in patients with PBC and PBC related HCC.
M Y ZHANG ; H XIE ; J ZHAO ; Q S LIANG ; L HAN ; X R ZHAI ; B S LI ; Z S ZOU ; Y SUN
Chinese Journal of Hepatology 2023;31(6):40-46
Objective: To clarify the values of autotaxin (ATX) in patients with primary biliary cholangitis (PBC) and PBC-related hepatocellular carcinoma (HCC). Methods: 179 patients with PBC were selected from prospective cohorts of autoimmune liver diseases at the time of first diagnosis of PBC in Department of Hepatology, the Fifth Medical Center of PLA General Hospital, from January 2016 to January 2018, all patients with PBC received UDCA therapy, primary endpoint was event of HCC, the follow-up period was censored at the date of HCC. The relationship between level of ATX and clinical features in patients with PBC and its potential value in predicting disease progression and PBC-related HCC were analyzed. Results: The ATX level in the peripheral blood of patients with PBC was significantly higher than that of alcoholic liver cirrhosis(ALC) (t = 3.278, P = 0.001) and healthy controls(HC) (t = 6.594, P < 0.001), however, when comparing PBC to non-PBC related HCC, no significant difference was found between the groups(t=-0.240, P = 0.811). Consistent with peripheral blood levels, histochemical staining indicated that ATX in the liver of patients with PBC was significantly higher than that of HC (Z=-3.633, P < 0.001) and ALC (Z=-3.283, P < 0.001), and the expression of ATX in PBC with advanced histological stage was significantly higher than PBC with early stage (Z=-2.018, P = 0.034). The baseline ATX level in PBC patients without developing to HCC during follow-up had significant difference to patients with developing to HCC (228.451 ± 124.093 ng/ml vs 301.583 ± 100.512 ng/ml, t = 2.339, P = 0.021). The result in multivariate logistic regression analysis showed that ATX were independent predictors of PBC related HCC(OR 1.245, 95%CI 1.097-1.413). The optimal critical value of peripheral blood ATX level at baseline for predicting HCC was 235.254 ng/ml, with the cut-off value of 0.714 in AUC of the ROC (95% CI was 0.597~ 0.857), sensitivity and specificity were 84.6% and 59.0%, respectively. Conclusion: ATX level was significantly higher in PBC patients over controls, and it's concentration was correlated with UDCA efficacy and fibrosis stage. ATX has potential values in predicting disease progression and PBC-related HCC.
8.2021 Asian Pacific Society of Cardiology Consensus Recommendations on the use of P2Y12 receptor antagonists in the Asia-Pacific Region: Special populations.
W E I C H I E H T A N TAN ; P C H E W CHEW ; L A M T S U I TSUI ; T A N TAN ; D U P L Y A K O V DUPLYAKOV ; H A M M O U D E H HAMMOUDEH ; Bo ZHANG ; Yi LI ; Kai XU ; J O N G ONG ; Doni FIRMAN ; G A M R A GAMRA ; A L M A H M E E D ALMAHMEED ; D A L A L DALAL ; T A N TAN ; S T E G STEG ; N N G U Y E N NGUYEN ; A K O AKO ; A L S U W A I D I SUWAIDI ; C H A N CHAN ; S O B H Y SOBHY ; S H E H A B SHEHAB ; B U D D H A R I BUDDHARI ; Zu Lv WANG ; Y E A N Y I P F O N G FONG ; K A R A D A G KARADAG ; K I M KIM ; B A B E R BABER ; T A N G C H I N CHIN ; Ya Ling HAN
Chinese Journal of Cardiology 2023;51(1):19-31

Result Analysis
Print
Save
E-mail