1.E26 transformation-specific variant 4 promotes sorafenib and cisplatin resistance in hepatocellular carcinoma cells .
Chen XIAOHUI ; L I XIN ; W U DEHUA
Journal of Southern Medical University 2019;39(8):875-882
OBJECTIVE:
To investigate the role of E26 transformation-specific variant 4 (ETV4) in sorafenib and cisplatin resistance in hepatocellular carcinoma (HCC).
METHODS:
HCC cell lines SMMC-7721 and HCC-LM3 were transfected with an ETV4- overexpressing plasmid or small interfering RNAs (siRNAs) targeting ETV4. The cells with ETV4 overexpression or ETV4 interference were treated with DMSO, sorafenib (5 μmol/L) or cisplatin (5 μmol/L) for 48 h, and the total protein and total RNA were collected. Western blotting, flow cytometry, EdU proliferation assay were used to analyze the apoptosis and proliferation of the cells. We also obtained clinical specimens of HCC tissues and paired adjacent tissues from 11 patients for detecting ETV4 mRNA expression levels using real-time fluorescence quantitative PCR (q-PCR). The effect of ETV4 interference on the mRNA expression levels of immediate early response gene 3 (IER3) was examined in HCC cells that were treated with DMSO, sorafenib or cisplatin for 48 h.
RESULTS:
The expression of ETV4 mRNA was significantly higher in HCC tissues than in the paired adjacent tissues. Overexpression of ETV4 in the HCC cell lines obviously inhibited cell apoptosis induced by sorafenib or cisplatin. Conversely, ETV4 interference significantly enhanced the apoptosis and inhibited the proliferation of the HCC cells following treatments with sorafenib or cisplatin. In addition, ETV4 regulated the mRNA expression levels of IER3 in the cells treatmed with sorafenib and cisplatin.
CONCLUSIONS
ETV4 promotes resistance of HCC cells to sorafenib or cisplatin .
Apoptosis
;
Apoptosis Regulatory Proteins
;
Carcinoma, Hepatocellular
;
Cell Line, Tumor
;
Cell Proliferation
;
Cisplatin
;
Drug Resistance, Neoplasm
;
Humans
;
Liver Neoplasms
;
Membrane Proteins
;
Niacinamide
;
Phenylurea Compounds
;
Sorafenib
2.Effect of 15-Deoxy-△(12,14)-prostaglandin J2 on Expression of Macrophage Migration Inhibitory Factor in Mouse Monocyte/macrophage Cell Line J774A.1.
Wei-Yang LI ; Yu-Meng SHI ; Xin LIU ; Lin YANG ; Li-Ying L I
Acta Academiae Medicinae Sinicae 2016;38(3):247-252
Objective To investigate the effect of 15-Deoxy-△(12,14)-prostaglandin J2 (15 d-PGJ2) on the expression of macrophage migration inhibitory factor (MIF) and its underlying mechanism in J774A.1. Methods The murine monocyte/macrophage cell line J774A.1 were divided into six groups:lipopolysaccharide (LPS) group,incubated with 1 μg/ml LPS for 1 h;normal control group,incubated with PBS for 1 h;negative control group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h;15 d-PGJ2 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h followed by 1 μg/ml LPS for 1 h;GW9662 group,incubated with 5 μmol/L 15 d-PGJ2 for 1 h following GW9662 10 μmol/L for 1 h,and then incubated with 1 μg/ml LPS for 1 h;and Vehicle group,control of GW9662,GW9662 was replaced by its solvent DMSO. The expression of MIF was detected via immunofluorescence and agarose gel electrophoresis. RT-qPCR and Western blotting were used to test whether 15 d-PGJ2 could regulate mRNA and protein expression of MIF in J774A.1 upon LPS challenge. The effect of peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist GW9662 on the regulation of MIF by 15 d-PGJ2 was observed. The effects of 15 d-PGJ2 on the nuclear translocation of PPAR-γ upon LPS challenge were detected via high content screening analysis. Results MIF DNA and protein expressions were detected in J774A.1. MIF mRNA expression was up-regulated (1.75±0.09,P=0.037) when challenged with LPS and 15 d-PGJ2 inhibited its upregulation (0.84±0.08,P=0.026) in J774A.1. The protein level was consistent with the mRNA level. PPAR-γ antagonist GW9662 reversed the effect of 15 d-PGJ2 (mRNA,1.48±0.06,P=0.016;protein,1.28). Furthermore,nuclear translocation of PPAR-γ was regulated by 15 d-PGJ2 in J774A.1 upon LPS challenge(1.39±0.02 vs. 1.01±0.03,P=0.003). Conclusion 15 d-PGJ2 may down-regulate the MIF expression in J774A.1 in a PPAR-γ-dependent manner.
Anilides
;
pharmacology
;
Animals
;
Cell Line
;
Intramolecular Oxidoreductases
;
metabolism
;
Lipopolysaccharides
;
Macrophage Migration-Inhibitory Factors
;
metabolism
;
Mice
;
Monocytes
;
drug effects
;
PPAR gamma
;
antagonists & inhibitors
;
Prostaglandin D2
;
analogs & derivatives
;
pharmacology