1.Combined Modality Therapy for Locally Advanced Non-Small Cell Lung Cancer.
L Chinsoo CHO ; J Michael DIMAIO ; Randall HUGHES ; Phuc NGUYEN ; Paula ANDERSON ; Hak CHOY
Cancer Research and Treatment 2003;35(5):373-382
The majority of non-small cell lung cancer patients present with locally advanced disease that may not be resectable. A single modality treatment such as thoracic radiotherapy often results in an inferior outcome when compared to combined modality treatment. Various combinations of radiotherapy, chemotherapy, and surgery have been tested in patients with locally advanced non-small-celllung cancer with promising results. The favorable results of the combined modality treatment are accompanied by a corresponding increase in treatment related morbidity. In this article, the results of the application of combined modality treatments in the management of locally advanced non-small cell lung cancer are reviewed.
Carcinoma, Non-Small-Cell Lung*
;
Combined Modality Therapy*
;
Drug Therapy
;
Humans
;
Radiotherapy
2.Role of HIF-1α in the Responses of Tumors to Radiotherapy and Chemotherapy
Chang W SONG ; Hyunkyung KIM ; Mi-Sook KIM ; Heon J PARK ; Sun-Ha PAEK ; Stephanie TEREZAKIS ; L Chinsoo CHO
Cancer Research and Treatment 2025;57(1):1-10
Tumor microenvironment is intrinsically hypoxic with abundant hypoxia-inducible factors-1α (HIF-1α), a primary regulator of the cellular response to hypoxia and various stresses imposed on the tumor cells. HIF-1α increases radioresistance and chemoresistance by reducing DNA damage, increasing repair of DNA damage, enhancing glycolysis that increases antioxidant capacity of tumors cells, and promoting angiogenesis. In addition, HIF-1α markedly enhances drug efflux, leading to multidrug resistance. Radiotherapy and certain chemotherapy drugs evoke profound anti-tumor immunity by inducing immunologic cell death that release tumor-associated antigens together with numerous pro-immunological factors, leading to priming of cytotoxic CD8+ T cells and enhancing the cytotoxicity of macrophages and natural killer cells. Radiotherapy and chemotherapy of tumors significantly increase HIF-1α activity in tumor cells. Unfortunately, HIF-1α effectively promotes various immune suppressive pathways including secretion of immune suppressive cytokines, activation of myeloid-derived suppressor cells, activation of regulatory T cells, inhibition of T cells priming and activity, and upregulation of immune checkpoints. Consequently, the anti-tumor immunity elevated by radiotherapy and chemotherapy is counterbalanced or masked by the potent immune suppression promoted by HIF-1α. Effective inhibition of HIF-1α may significantly increase the efficacy of radiotherapy and chemotherapy by increasing radiosensitivity and chemosensitivity of tumor cells and also by upregulating anti-tumor immunity.
3.Role of HIF-1α in the Responses of Tumors to Radiotherapy and Chemotherapy
Chang W SONG ; Hyunkyung KIM ; Mi-Sook KIM ; Heon J PARK ; Sun-Ha PAEK ; Stephanie TEREZAKIS ; L Chinsoo CHO
Cancer Research and Treatment 2025;57(1):1-10
Tumor microenvironment is intrinsically hypoxic with abundant hypoxia-inducible factors-1α (HIF-1α), a primary regulator of the cellular response to hypoxia and various stresses imposed on the tumor cells. HIF-1α increases radioresistance and chemoresistance by reducing DNA damage, increasing repair of DNA damage, enhancing glycolysis that increases antioxidant capacity of tumors cells, and promoting angiogenesis. In addition, HIF-1α markedly enhances drug efflux, leading to multidrug resistance. Radiotherapy and certain chemotherapy drugs evoke profound anti-tumor immunity by inducing immunologic cell death that release tumor-associated antigens together with numerous pro-immunological factors, leading to priming of cytotoxic CD8+ T cells and enhancing the cytotoxicity of macrophages and natural killer cells. Radiotherapy and chemotherapy of tumors significantly increase HIF-1α activity in tumor cells. Unfortunately, HIF-1α effectively promotes various immune suppressive pathways including secretion of immune suppressive cytokines, activation of myeloid-derived suppressor cells, activation of regulatory T cells, inhibition of T cells priming and activity, and upregulation of immune checkpoints. Consequently, the anti-tumor immunity elevated by radiotherapy and chemotherapy is counterbalanced or masked by the potent immune suppression promoted by HIF-1α. Effective inhibition of HIF-1α may significantly increase the efficacy of radiotherapy and chemotherapy by increasing radiosensitivity and chemosensitivity of tumor cells and also by upregulating anti-tumor immunity.
4.Role of HIF-1α in the Responses of Tumors to Radiotherapy and Chemotherapy
Chang W SONG ; Hyunkyung KIM ; Mi-Sook KIM ; Heon J PARK ; Sun-Ha PAEK ; Stephanie TEREZAKIS ; L Chinsoo CHO
Cancer Research and Treatment 2025;57(1):1-10
Tumor microenvironment is intrinsically hypoxic with abundant hypoxia-inducible factors-1α (HIF-1α), a primary regulator of the cellular response to hypoxia and various stresses imposed on the tumor cells. HIF-1α increases radioresistance and chemoresistance by reducing DNA damage, increasing repair of DNA damage, enhancing glycolysis that increases antioxidant capacity of tumors cells, and promoting angiogenesis. In addition, HIF-1α markedly enhances drug efflux, leading to multidrug resistance. Radiotherapy and certain chemotherapy drugs evoke profound anti-tumor immunity by inducing immunologic cell death that release tumor-associated antigens together with numerous pro-immunological factors, leading to priming of cytotoxic CD8+ T cells and enhancing the cytotoxicity of macrophages and natural killer cells. Radiotherapy and chemotherapy of tumors significantly increase HIF-1α activity in tumor cells. Unfortunately, HIF-1α effectively promotes various immune suppressive pathways including secretion of immune suppressive cytokines, activation of myeloid-derived suppressor cells, activation of regulatory T cells, inhibition of T cells priming and activity, and upregulation of immune checkpoints. Consequently, the anti-tumor immunity elevated by radiotherapy and chemotherapy is counterbalanced or masked by the potent immune suppression promoted by HIF-1α. Effective inhibition of HIF-1α may significantly increase the efficacy of radiotherapy and chemotherapy by increasing radiosensitivity and chemosensitivity of tumor cells and also by upregulating anti-tumor immunity.