1.Identification of Compound Heterozygous EYS Variants in a Korean Patient with Retinitis Pigmentosa.
Hyoung Tae KIM ; Ja Hyun JANG ; Kyungeun KANG ; Chang Seok KI ; Hyewon CHUNG
Laboratory Medicine Online 2018;8(2):66-70
No abstract available.
Humans
;
Retinitis Pigmentosa*
;
Retinitis*
2.A Case of Elderly-Onset Crescentic Henoch-Schonlein Purpura Nephritis with Hypocomplementemia and Positive MPO-ANCA.
Jung Hee YU ; Kyu Beck LEE ; Jae Eun LEE ; Hyang KIM ; Kyungeun KIM ; Ki Seok JANG ; Moon Hyang PARK
Journal of Korean Medical Science 2012;27(8):957-960
Henoch-Schonlein purpura (HSP) is common in childhood and often self-limiting. There have been limited studies on elderly-onset HSP nephritis (HSPN). A 76-yr-old man was transferred to our hospital with a 1-month history of oliguria, abdominal pain, edema and palpable purpura in the legs. Three months ago, he was admitted to another hospital with jaundice, and consequently diagnosed with early common bile duct cancer. The patient underwent a Whipple's operation. Antibiotics were administrated because of leakage in the suture from the surgery. However, he showed progressive renal failure with edema and purpura in the legs. Laboratory investigations showed serum creatinine 6.4 mg/dL, 24-hr urine protein 8,141 mg/day, myeloperoxidase anti-neutrophil cytoplasmic antibodies (MPO-ANCA) 1:40 and C3 below 64.89 mg/dL. Renal biopsy showed crescentic glomerulonephritis, as well as mesangial and extracapillary Ig A deposition. We started steroid therapy and hemodialysis, but he progressed to end-stage renal failure and he has been under maintenance hemodialysis. We describe elderly onset HSPN with MPO-ANCA can be crescentic glomerulonephritis rapidly progressed to end stage renal failure.
Aged
;
Antibodies, Antineutrophil Cytoplasmic/*analysis
;
Common Bile Duct Neoplasms/complications/surgery
;
Complement C3/analysis
;
Creatinine/blood
;
Edema/drug therapy
;
Enzyme-Linked Immunosorbent Assay
;
Glomerulonephritis/pathology
;
Humans
;
Male
;
Purpura, Schoenlein-Henoch/*diagnosis/drug therapy
;
Renal Dialysis
;
Renal Insufficiency/etiology/pathology
;
Steroids/therapeutic use
3.Clinical Efficacy of Ultrafast Dynamic Contrast-Enhanced MRI Using Compressed Sensing in Distinguishing Benign and Malignant Soft-Tissue Tumors
You Seon SONG ; In Sook LEE ; Young Jin CHOI ; Jeung Il KIM ; Kyung-Un CHOI ; Kangsoo KIM ; Kyungeun JANG
Korean Journal of Radiology 2025;26(1):43-53
Objective:
To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.
Materials and Methods:
A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained. During post-processing of the early arterial phase of DCE-MRI, the time-to-enhance (TTE), time-to-peak (TTP), initial area under the curve at 60 s (iAUC60), and maximum slope were calculated. Furthermore, the delayed arterial phase parameters of DCEMRI, including Ktrans , Kep, Ve, and iAUC values and time-concentration curve (TCC) types, were determined. Clinical and MRI parameters were statistically analyzed to differentiate between benign and malignant tumors and their correlation with tumor grading.
Results:
According to logistic regression analysis, the TTE value (P < 0.001) of the early arterial phase and Ve (P = 0.039) and iAUC (P = 0.006) values of the delayed arterial phase, as well as age, location, peritumoral edema, and contrast heterogeneity on conventional MRI, were significant (P = 0.001–0.015) in differentiating benign and malignant tumors. Among all the quantitative parameters, the TTE value had the highest accuracy, with an area under the receiver operating characteristic curve of 0.902. The grading of malignant tumors was significantly correlated with peritumoral edema; CE heterogeneity; visual diffusion restriction; minimum and mean ADC; TTP, Kep, and Ve values; and the TCC graph (all P < 0.05).
Conclusion
Among the quantitative parameters obtained using ultrafast DCE-MRI, early arterial phase TTE was the most accurate for distinguishing between benign and malignant tumors.
4.Clinical Efficacy of Ultrafast Dynamic Contrast-Enhanced MRI Using Compressed Sensing in Distinguishing Benign and Malignant Soft-Tissue Tumors
You Seon SONG ; In Sook LEE ; Young Jin CHOI ; Jeung Il KIM ; Kyung-Un CHOI ; Kangsoo KIM ; Kyungeun JANG
Korean Journal of Radiology 2025;26(1):43-53
Objective:
To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.
Materials and Methods:
A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained. During post-processing of the early arterial phase of DCE-MRI, the time-to-enhance (TTE), time-to-peak (TTP), initial area under the curve at 60 s (iAUC60), and maximum slope were calculated. Furthermore, the delayed arterial phase parameters of DCEMRI, including Ktrans , Kep, Ve, and iAUC values and time-concentration curve (TCC) types, were determined. Clinical and MRI parameters were statistically analyzed to differentiate between benign and malignant tumors and their correlation with tumor grading.
Results:
According to logistic regression analysis, the TTE value (P < 0.001) of the early arterial phase and Ve (P = 0.039) and iAUC (P = 0.006) values of the delayed arterial phase, as well as age, location, peritumoral edema, and contrast heterogeneity on conventional MRI, were significant (P = 0.001–0.015) in differentiating benign and malignant tumors. Among all the quantitative parameters, the TTE value had the highest accuracy, with an area under the receiver operating characteristic curve of 0.902. The grading of malignant tumors was significantly correlated with peritumoral edema; CE heterogeneity; visual diffusion restriction; minimum and mean ADC; TTP, Kep, and Ve values; and the TCC graph (all P < 0.05).
Conclusion
Among the quantitative parameters obtained using ultrafast DCE-MRI, early arterial phase TTE was the most accurate for distinguishing between benign and malignant tumors.
5.Clinical Efficacy of Ultrafast Dynamic Contrast-Enhanced MRI Using Compressed Sensing in Distinguishing Benign and Malignant Soft-Tissue Tumors
You Seon SONG ; In Sook LEE ; Young Jin CHOI ; Jeung Il KIM ; Kyung-Un CHOI ; Kangsoo KIM ; Kyungeun JANG
Korean Journal of Radiology 2025;26(1):43-53
Objective:
To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.
Materials and Methods:
A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained. During post-processing of the early arterial phase of DCE-MRI, the time-to-enhance (TTE), time-to-peak (TTP), initial area under the curve at 60 s (iAUC60), and maximum slope were calculated. Furthermore, the delayed arterial phase parameters of DCEMRI, including Ktrans , Kep, Ve, and iAUC values and time-concentration curve (TCC) types, were determined. Clinical and MRI parameters were statistically analyzed to differentiate between benign and malignant tumors and their correlation with tumor grading.
Results:
According to logistic regression analysis, the TTE value (P < 0.001) of the early arterial phase and Ve (P = 0.039) and iAUC (P = 0.006) values of the delayed arterial phase, as well as age, location, peritumoral edema, and contrast heterogeneity on conventional MRI, were significant (P = 0.001–0.015) in differentiating benign and malignant tumors. Among all the quantitative parameters, the TTE value had the highest accuracy, with an area under the receiver operating characteristic curve of 0.902. The grading of malignant tumors was significantly correlated with peritumoral edema; CE heterogeneity; visual diffusion restriction; minimum and mean ADC; TTP, Kep, and Ve values; and the TCC graph (all P < 0.05).
Conclusion
Among the quantitative parameters obtained using ultrafast DCE-MRI, early arterial phase TTE was the most accurate for distinguishing between benign and malignant tumors.
6.Clinical Efficacy of Ultrafast Dynamic Contrast-Enhanced MRI Using Compressed Sensing in Distinguishing Benign and Malignant Soft-Tissue Tumors
You Seon SONG ; In Sook LEE ; Young Jin CHOI ; Jeung Il KIM ; Kyung-Un CHOI ; Kangsoo KIM ; Kyungeun JANG
Korean Journal of Radiology 2025;26(1):43-53
Objective:
To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.
Materials and Methods:
A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained. During post-processing of the early arterial phase of DCE-MRI, the time-to-enhance (TTE), time-to-peak (TTP), initial area under the curve at 60 s (iAUC60), and maximum slope were calculated. Furthermore, the delayed arterial phase parameters of DCEMRI, including Ktrans , Kep, Ve, and iAUC values and time-concentration curve (TCC) types, were determined. Clinical and MRI parameters were statistically analyzed to differentiate between benign and malignant tumors and their correlation with tumor grading.
Results:
According to logistic regression analysis, the TTE value (P < 0.001) of the early arterial phase and Ve (P = 0.039) and iAUC (P = 0.006) values of the delayed arterial phase, as well as age, location, peritumoral edema, and contrast heterogeneity on conventional MRI, were significant (P = 0.001–0.015) in differentiating benign and malignant tumors. Among all the quantitative parameters, the TTE value had the highest accuracy, with an area under the receiver operating characteristic curve of 0.902. The grading of malignant tumors was significantly correlated with peritumoral edema; CE heterogeneity; visual diffusion restriction; minimum and mean ADC; TTP, Kep, and Ve values; and the TCC graph (all P < 0.05).
Conclusion
Among the quantitative parameters obtained using ultrafast DCE-MRI, early arterial phase TTE was the most accurate for distinguishing between benign and malignant tumors.
7.Clinical Efficacy of Ultrafast Dynamic Contrast-Enhanced MRI Using Compressed Sensing in Distinguishing Benign and Malignant Soft-Tissue Tumors
You Seon SONG ; In Sook LEE ; Young Jin CHOI ; Jeung Il KIM ; Kyung-Un CHOI ; Kangsoo KIM ; Kyungeun JANG
Korean Journal of Radiology 2025;26(1):43-53
Objective:
To evaluate the clinical efficacy of ultrafast dynamic contrast-enhanced (DCE)-MRI using a compressed sensing (CS) technique for differentiating benign and malignant soft-tissue tumors (STTs) and to evaluate the factors related to the grading of malignant STTs.
Materials and Methods:
A total of 165 patients (96 male; mean age, 61 years), comprising 111 with malignant STTs and 54 with benign STTs according to the 2020 WHO classification, underwent DCE-MRI with CS between June 2018 and June 2023. The clinical, qualitative, and quantitative parameters associated with conventional MRI were also obtained. During post-processing of the early arterial phase of DCE-MRI, the time-to-enhance (TTE), time-to-peak (TTP), initial area under the curve at 60 s (iAUC60), and maximum slope were calculated. Furthermore, the delayed arterial phase parameters of DCEMRI, including Ktrans , Kep, Ve, and iAUC values and time-concentration curve (TCC) types, were determined. Clinical and MRI parameters were statistically analyzed to differentiate between benign and malignant tumors and their correlation with tumor grading.
Results:
According to logistic regression analysis, the TTE value (P < 0.001) of the early arterial phase and Ve (P = 0.039) and iAUC (P = 0.006) values of the delayed arterial phase, as well as age, location, peritumoral edema, and contrast heterogeneity on conventional MRI, were significant (P = 0.001–0.015) in differentiating benign and malignant tumors. Among all the quantitative parameters, the TTE value had the highest accuracy, with an area under the receiver operating characteristic curve of 0.902. The grading of malignant tumors was significantly correlated with peritumoral edema; CE heterogeneity; visual diffusion restriction; minimum and mean ADC; TTP, Kep, and Ve values; and the TCC graph (all P < 0.05).
Conclusion
Among the quantitative parameters obtained using ultrafast DCE-MRI, early arterial phase TTE was the most accurate for distinguishing between benign and malignant tumors.
8.Living Donor Liver Transplantation in a Korean Child with Glycogen Storage Disease Type IV and a GBE1 Mutation.
Hye Ryun BAN ; Kyung Mo KIM ; Joo Young JANG ; Gu Hwan KIM ; Han Wook YOU ; Kyungeun KIM ; Eunsil YU ; Dae Yeon KIM ; Ki Hun KIM ; Young Joo LEE ; Sung Gyu LEE ; Young Nyun PARK ; Hong KOH ; Ki Sup CHUNG
Gut and Liver 2009;3(1):60-63
Glycogen storage disease type IV (GSD-IV) is an autosomal recessive disease caused by a deficient glycogen branching enzyme (GBE), encoded by the GBE1 gene, resulting in the accumulation of abnormal glycogen deposits in the liver and other tissues. We treated a 20-month-old girl who presented with progressive liver cirrhosis and was diagnosed with GSD-IV, as confirmed by GBE1 gene mutation analysis, and underwent living related heterozygous donor liver transplantation. Direct sequencing of the GBE1 gene revealed that the patient was compound heterozygous for a known c.1571G>A (p.Gly264Glu) mutation a novel c.791G> A (Arg524Gln) mutation. This is the first report of a Korean patient with GSD-IV confirmed by mutation analysis, who was treated successfully by liver transplantation.
1,4-alpha-Glucan Branching Enzyme
;
Child
;
Glycogen
;
Glycogen Storage Disease
;
Glycogen Storage Disease Type IV
;
Humans
;
Infant
;
Liver
;
Liver Cirrhosis
;
Liver Transplantation
;
Living Donors
;
Tissue Donors